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ABSTRACT
Wetland restoration has emerged as an important tool for counteracting and restoring lost ecological services resulting 
from urban and agricultural development. Over the last 20 years, Geographic Information Systems (GIS) modeling has 
also become a powerful mechanism for prioritizing potential wetland restoration sites across a variety of geographic scales. 
Although numerous studies have created GIS-based models for a variety of uses, no one has comprehensively analyzed 
and compared models to determine best practices and inform future site selection efforts. We performed a comprehen-
sive literature review of GIS-based wetland prioritization models. We found no congruency between stated objectives, 
specific variables and metrics, and respective weighting and scoring systems. We then performed a case study, applying 
these findings to explore potential improvements to the spatial decision support system (SDSS) used by the Mississippi 
Coastal Improvement Program (MsCIP; USA), a large-scale coastal restoration project aimed at improving the resiliency 
and reducing flood risk after significant damage from Hurricane Katrina (2005). This case study draws on several state-
of-the-art practices in the literature to retroactively study potential improvements in the SDSS’s flexibility and accuracy in 
identifying potential wetland restoration sites. Our findings suggest improvements for wetland restoration prioritization 
models (including consistent variable use and ground-truthing) that could better direct future federal initiatives, as well 
as a wide range of domestic and international wetland restoration programs.

Keywords: coastal resilience, spatial decision support systems, wetland mitigation, wetland site selection.

Healthy, well-functioning wetlands produce a variety of 
ecosystem functions and services, including increased 

flood prevention, improved water quality, wildlife preserva-
tion, and soil amelioration, among many others (Mitsch and 
Gosselink 2000). Wetland benefits are not strictly ecologi-
cal, as water-retention and pollutant filtration services can 
decrease water treatment costs in municipal infrastructure 
systems (Strager et al. 2010). Additionally, the emergence 
of wetland mitigation banking (NRC 2001), a policy tool 
aimed at restoring lost ecological services resulting from 

 Restoration Recap •
• Geographic Information Systems (GIS) modeling is a 

powerful mechanism for prioritizing potential wetland 
restoration sites across a variety of geographic scales.

• We performed a comprehensive literature review of GIS-
based wetland prioritization models.

• We found a lack of consensus across models in variables 
used to prioritize site selection.

• We applied our findings to gauge future improvements 
in federal targeting of wetland restoration.

• As a case study, we studied the Mississippi Coastal 
Improvement Program (MsCIP)’s spatial decision sup-
port system to determine potential improvements in 
flexibility and accuracy in identifying potential wetland 
restoration sites.

• Our findings suggest improvements for wetland resto-
ration prioritization models, including using consistent 
variables and ground-truthing.
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harmful development, has added an economic impetus for 
wetland restoration and enhancement (Strager et al. 2010).

While various policies have been developed to direct 
the location and form of wetland restoration efforts, recent 
evidence has begun to call into question the effectiveness 
and success rate of these projects (Holland and Kentula 
1992, Kentula et al. 1992, Pfeifer and Kaiser 1995, Cole 
and Shafer 2002, Reiss et al. 2009). Research suggests that 
restored wetlands often fail to meet expressed performance 
goals or function effectively as healthy environmental 
systems (Russell et al. 1997, Brown and Veneman 2001, 
Williams 2002). Reasons for these failures are varied, but 
many times can be largely attributed to technical error 
(construction or mechanical), problematic hydrology, lack 
of financial resources, and/or poor site selection (Williams 
2002). Failure to recognize wetlands as part of larger natu-
ral landscapes also contributes to unsuccessful mitigation 
(NRC 2001).

Rather than viewing them as a collection of isolated 
restoration sites, studies have begun to show that a ‘water-
shed approach’ (originating from Davenport et al. 1996) 
to wetland site selection and restoration can have a far 
greater impact on wetland health, function, and overall 
performance than simply replacing damaged or destroyed 
wetlands onsite (White and Fennessy 2005, Kramer and 
Carpendo 2009). The watershed approach has been con-
cisely defined by ELI and TNC (2014) as “. . . an analytical 
process for making decisions about the location and type 
of compensatory mitigation projects that should be carried 
out.” In the absence of watershed plans, agencies instead 
rely on as deep a pool of watershed information as possible 
during decision-making processes (ELI and TNC 2014). As 
adopted by 2008 regulations, the approach’s increased reli-
ance on planning, watershed information, and site context 
is aimed directly at improving both the quantity and quality 
of compensatory wetlands created under the auspices of 
the U.S. Clean Water Act (USACE and EPA 2008).

Geographic Information Systems (GIS) analysis has 
emerged as a powerful mechanism to incorporate a variety 
of watershed and site-level data (following the ‘watershed 
approach’) into the wetland site selection process. Easily 
applied over a range of geographic scales and with input 
data flexibility, GIS-based wetland prioritization models 
hold great potential, as long as the organization using the 
model possesses the technical knowledge to run the soft-
ware and has the necessary data inputs (Drummond and 
French 2008). Unfortunately, GIS-based wetland restora-
tion prioritization models have struggled with the most 
basic, critical question of any site selection model: what 
attributes define a wetland and its ability to be restored to 
produce ecosystem functions?

Here we attempt to provide some clarity and organiza-
tion to the literature on GIS-based wetland prioritization 
models. Through a comprehensive literature review, we 
categorize these models based on their stated objective, the 

variables used for site selection, and the specific weighting 
mechanisms (and theoretical reasoning behind weighting) 
used (if any) to rank and prioritize the sites for restora-
tion. Aggregating this information provides researchers 
and practitioners with a comprehensive and detailed list-
ing of the major works within a growing body of litera-
ture and research on GIS-based wetland restoration site 
prioritization modeling.

Expanding on this work, we then evaluate the spatial 
decision support system (SDSS) used to guide the Mis-
sissippi Coastal Improvements Program (MsCIP 2009), a 
comprehensive effort to increase coastal resiliency in the 
three Mississippi coastal counties following damage from 
Hurricane Katrina (2005). Ecological restoration is a key 
component of this plan, with the SDSS model responsible 
for wetland site selection and prioritization. Informed by 
the findings of the literature review, we aim to refine and 
improve the functioning and performance of the SDSS. 
The potential use by the U.S. Army Corps of Engineers 
(USACE) and other groups in future domestic and inter-
national projects make MsCIP an excellent case study for 
creating a more robust and extensible model.

Literature Review of GIS-Based Wetland 
Mitigation and Restoration Models

In performing a review of wetland restoration site prioriti-
zation projects, our objective was to examine and analyze 
GIS-based wetland mitigation and restoration models 
across a wide range of journal databases. In particular, 
we were interested in congruencies between the models 
with regards to their stated objectives (which may be very 
different across applications), the individual variables or 
metrics utilized, and their respective weighting and scor-
ing systems.

Literature Review Process
With the explicit aim of identifying only GIS-based models 
that prioritized wetland mitigation and or restoration 
sites for all years, we initiated searches in three major 
online research databases during the Fall of 2012: Google 
Scholar, Sciencedirect, and Springerlink. These databases 
were specifically selected because of their comprehensive 
coverage of environmental management and ecological and 
environmental planning journals; publications believed 
to be most likely to contain studies of wetland restoration 
and mitigation spatial modeling. We used two related, but 
unique keyword searches: “GIS-based, wetland mitiga-
tion prioritization” and “GIS-based, wetland restoration 
prioritization”. Together, these queries produced n = 2,353 
potential research articles.

A number of principles guided the process of identifying 
relevant research studies within this initial search set. First, 
given the explicit interest in remote, GIS-based wetland 
prioritization models, we excluded studies from our review 
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that relied exclusively on physical observations or on-site 
data collection (studies that were not, in fact, GIS-based 
prioritization models; this accounted for the vast majority 
[~ 99%] of articles initially identified). Once we collected all 
pertinent studies from the six searches (two search terms 
in three databases), the references of each individual article 
were consulted to locate any critical missing literature (a 
‘bootstrap’ process). In total, the initial set of articles was 
filtered to identify all GIS-based wetland prioritization 
models available (n = 27), which were published between 
1994 and 2013 in a wide-range of scholarly journals.

In assessing and analyzing the individual studies, we 
focused on three specific factors. First, we attempted to 
determine the explicit objective of the model. While all 
of the studies focused on wetland prioritization, many 
organized and ranked their identified wetlands based on 
one or more performance criteria (e.g., flood risk reduction 
or habitat provision). Second, we compiled and classified 
individual variables and indicators utilized in each model 
(we should note that our sample size did not facilitate 
analysis of temporal trends in variables and indicators over 
the 20–year time period of studies we reviewed). Finally, 
we located the internal weights or relative values assigned 
to each variable and the rationale used to justify them.

Model Objectives
Of the 27 studies, 22 explicitly aimed to provide a GIS-
based model that prioritized wetlands (Table 1). More 
than half of the studies (15) provided additional objectives 
beyond general wetland prioritization (Supplementary 
Table S1). Locating and ranking wetlands that: 1)  pre-
served/restored wildlife habitats: 2) improved water quality; 
and 3)  increased flood attenuation were the three most 
popular additional objectives. Rather than solely focus on 
only one performance objective, eight of these 15 studies 
selected one or more, with two attempting to prioritize 
wetlands based on all three. Two of the models also had 
‘variable objectives,’ which could be defined and rearranged 
based on the specific aims of the user. Mentioned, but less 
popular, objectives included prioritizing wetlands in order 
to produce ecosystem services (e.g., Kramer and Carpendo 
2009) and identifying convertible farmland (Huang et 
al. 2010). The exact ecosystem services sought was often 
somewhat scattered, and included concepts such as “con-
nectivity to existing conservation lands” and “maintenance 
of high water quality streams for biodiversity (Kramer and 
Carpendo 2009, Pg. 3)”.

Model Variables
Each GIS-based wetland prioritization model identified 
and selected specific variables deemed essential to achiev-
ing the goals and aims of each study. Through multi-
criteria decision analysis, variables were quantified and 
then mathematically arranged to either identify suitable 
restoration sites and/or provide a suitability score allowing 

for comparative ranking between locations. Equations often 
included both binary variables that filtered site locations 
through multiplication and weighted variables that were 
summed together to determine final site suitability. Below is 
an example of a simple equation from Ausseil (2007) illus-
trating suitability scoring (typically structured as a linear 
combination) for a number of variables/criteria, where n 
is the number of criteria, wi is the weight associated with 
the variable, and Vi is the variable.

Score= wiVi

n

i=1

 

From our 27 selected studies, we identified a total of 78 
individual model variables covering a wide-range of envi-
ronmental media including hydrology, geomorphology, 
surrounding built environment, and habitat connectivity 
(see the entire set in Table S1). Our analysis suggested 
that the stated objectives of each specific model helped to 
shape and direct variable selection; for example, studies 
which were explicitly interested in wildlife habitat pres-
ervation were more likely to include variables such as 
habitat core-area ratio and/or proximity to other protected 
wildlife preserves, instead of hydrologic connectivity or 
soil saturation index.

The most popular variable throughout all of the studies 
was the presence of hydric soils; 17 out of the 27 studies 
(62.9%) included this variable in their model. The second 
most popular variable (44.4%) could be termed ‘hydro-
logic connectivity’. Although each of the 12 studies that 
included this variable varied in their specific approach, all 
12 attempted to quantify sites’ proximity and/or relation-
ship to adjacent hydrology. Following hydrologic con-
nectivity were land use (37%), land cover 33.3%), wetland 
connectivity (29.6%), and “classified as wetlands” (29.6%). 
Surprisingly, no single variable was consistent throughout 
all 27 models. Furthermore, 42 out of the 78 total variables 
(53%) were completely unique and used in only one model. 
This lack of consensus highlights the current fractured and 
subjective landscape of GIS-based wetland prioritization 
models.

Model Weighting
All of the models reviewed utilized some form of multi-
criteria or multiple attribute decision analysis (MCDA) 
(Malczewski 1999; Prato 1999). MCDA facilitates collabor-
ative decision-making and “. . . allows integration of prefer-
ences for attributes with objective measures” of a variety of 
variables (Strager et al. 2010, Pg. 7). We found inconsistent 
variable weighting throughout all of the models analyzed. 
Eight models assigned no secondary weights to their vari-
ables; that is, each variable had equal power to influence 
the model and no adjustments were made for the range or 
variance of measurements. That is, weights were dictated 

http://uwpress.wisc.edu/journals/pdfs/ERv33n04_article01_Widis_SupplementaryMaterials.pdf
http://uwpress.wisc.edu/journals/pdfs/ERv33n04_article01_Widis_SupplementaryMaterials.pdf
http://uwpress.wisc.edu/journals/pdfs/ERv33n04_article01_Widis_SupplementaryMaterials.pdf


December 2015 ECOLOGICAL RESTORATION 33:4  • 361

Table 1. Stated study objectives of wetland restoration prioritization literature reviewed (n = 27 studies).
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Ausseil et al. 2007 X
Berman et al. 2002 X
Brophy 2005 X X X
Brown and Strayner 1994 X X X
Cedfeldt et al. 2000 X X X X
Copeland et al. 2010 X
Huang et al. 2010 X X
Kauffman-Axelrod and Steinberg 2010 X
Kramer and Carpendo 2009 X X
Lin and Kleiss 2007 X X X
Liu et al. 2006 X
McAllister et al. 2000 X X X
McCauley and Jenkins 2005 X
Moreno-Mateos et al. 2012 X X X
Newbold 2005 X X
Ouyang 2011 X
Palmeri and Trepel 2002 X X
Richardson and Gatti 1999 X X
Russell et al. 1997 X X X
Schleupner 2010 X
Schleupner and Schneider 2013 X
Strager et al. 2010 X
Tang et al. 2012 X
Van Lonkhuyzen et al. 2004 X
Vellidis et al. 2003 X X X
White and Fennessy 2005 X X
Williams 2002 X

by the arbitrary choice of measurement units for each 
variable. Nine models used a two-tier weighting system 
focused on first defining physical suitability, and then 
determining potential performance opportunities (e.g., 
Brown and Strayner 1994). Within this framework, specific 
variables were selected to function as binary criteria that 
quickly narrow down and define a site. These variables were 
usually focused on physical parameters that were seen as 
particularly useful to define wetland properties or features 
(White and Fennessy 2005).

After the wetlands in the area of interest or study are 
determined, additional variables were used, depending on 
the objectives of the model, to determine site suitability and 
wetland performance or function based on what White 
and Fennessy (2005) refer to as ‘neighborhood parameters’. 
Depending on the specific model, these secondary vari-
ables could either be weighted evenly or assigned specific 
influence. Ten of the final 19 models that used weights 
applied variable weighting, assigning different strengths 
to each criterion based on its importance in determining 
the model’s respective objective(s).

If varying weights were placed on model variables, we 
attempted to determine the specific rationale used to jus-
tify the distribution of influence in the model. Six of the 
19 models that had variable weighting failed to provide 
any sort of justification or rationale for why they chose 
their respective weighting system. Of the remaining 13 
models, 11 cited professional or expert-based judgment 
as the rationale behind their weight distribution, with two 
models weighting based on their own literature reviews 
(Kramer and Carpendo 2009, Richardson and Gatti 1999).

In summary, much like our exploration of model vari-
ables, it was difficult to discern any clear patterns or trends 
in models’ variable weighting, as we observed a nearly 
even distribution between even (un-weighted), two-tier, 
and variable weighted models. Once again, this underlines 
the lack of consensus and cohesion between GIS-based 
wetland prioritization models, including models with very 
similar objectives.
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Model Calibration
We found little to no ground-truthing, model calibration, 
and/or model validation across any of the studies reviewed. 
Donigian (2002, Pg. 44) defines model ‘calibration’ as “. . . 
an iterative procedure of parameter evaluation and refine-
ment, as a result of comparing simulated and observed 
values of interest”. We can contrast this with model ‘vali-
dation,’ which acts as a further check on the accuracy 
of model variables and weights through assessments of 
model accuracy in scenarios and environments separate 
from the calibration process (Donigian 2002, Refsgaard 
1997). Calibration and validation are critical steps in the 
model building process as they verify and determine a 
model’s accuracy and effectiveness (Donigian 2002, Long 
and Freese 2014, Train 2003, Refsgaard 1997).

Of the 27 models reviewed, not a single one of the 
models calibrated their weights and variables as a result 
of on-site field observations or ground-truthing efforts 
to verify model validity. No models engaged in the typi-
cal model calibration practice of reserving some data for 
post-calibration model validation, which would test if the 
model calibration based on ground-truthed data were cor-
rect (i.e., do model weights apply across the entire dataset?). 
While the function of weights is typically to indicate the 
relative importance that a decision-maker places on each 
biophysical factor (as specified through theory and data), 
field observations can be used to validate the biophysical 
aspects of the model (e.g., do hydric soils occur where 
GIS data indicate that they occur?). Although four models 
performed on-site field observations (Brophy 2005, Strager, 
et al. 2010, Williams 2002, Lin and Kleiss 2007) and three 
models (Moreno-Mateos et al. 2012, Cedfeldt et al. 2000, 
Palmeri and Trepel 2002) performed some type of inde-
pendent validation, none performed any type of iterative 
calibration of specific variable weights (to improve the 
resulting model) as a result of their findings.

Our review of the literature on GIS-based methods for 
prioritizing wetland restoration did not identify many 
systematic features of previous studies. In particular, we 
were struck by the largely ad hoc nature of the literature, 
whereby measured variables and their weights are chosen 
almost entirely based on professional judgment. It is clear 
that there has been little to no systematic assessment of the 
functional relationships between the attributes of potential 
restoration sites and the various ecosystem service flows 
that these sites might enhance if restored.

Mississippi Coastal Improvements 
Program (MsCIP) Case Study

Based on the findings of our comprehensive literature 
review, and in an effort to apply that research to improve 
the functioning and efficiency of GIS-based wetland suit-
ability and prioritization models, we chose to examine the 

spatial decision support system (SDSS) created by Lin and 
Kleiss (2007), which was a key technical tool in creating 
the Mississippi Coastal Improvement Program (MsCIP) 
Comprehensive Plan (MsCIP 2009) and one of the 27 
studies in our literature review.

The MsCIP’s SDSS model was chosen primarily for 
three reasons. First, with the extensive federal funding that 
MsCIP is allocated to receive, the SDSS has guided one of 
the most significant and well-financed wetland restoration 
programs in the United States. Second, MsCIP is slated to 
identify, prioritize, and drive an enormous amount of eco-
logical restoration (i.e., it will be influential in the region). 
Finally, if the SDSS is used in a similar manner in the future, 
any improvements to its accuracy could have a very influ-
ential impact on wetland restoration efforts elsewhere on 
the Gulf Coast, and in future uses of the SDSS or similar 
models in other domestic or international applications.

In this case study, we: 1) review background infor-
mation on the MsCIP; 2) examine the SDSS in detail, 
including its specific objectives, variables, and weighting 
mechanisms; and 3) review and experiment with additions 
and improvements to the SDSS model supported by the 
literature.

MsCIP Background
In the wake of the catastrophic destruction caused by Hur-
ricane Katrina, USACE was directed by the US Congress 
to “. . . conduct an analysis and design for comprehensive 
improvements or modifications to existing improvements 
in the coastal area of Mississippi in the interest of hurricane 
and storm damage reduction, prevention of saltwater intru-
sion, preservation of fish and wildlife, prevention of ero-
sion, and other related water resources purposes (MsCIP 
2009, Pg. S–1)”. The result of this inquiry was the creation 
of the MsCIP comprehensive plan, which is comprised of 
12 major elements to address hurricane and storm damage 
reduction, saltwater intrusion, shoreline erosion, and fish 
and wildlife preservation.

To accomplish these goals, the plan calls for numerous 
activities, including a High Hazard Area Risk Reduction 
Program (HARP) involving land acquisition of approxi-
mately 2,000 tracts in areas at the highest risk of being 
damaged by storm surge, flood proofing, levee construc-
tion, and major ecosystem restoration projects. Special 
authority from Congress allowed cost effectiveness to be 
used in lieu of the typical ‘national economic development 
benefits’ typically needed to justify projects. In addition, 
MsCIP was also not required to follow an incremental 
benefit-cost analysis.

The financial backing for the MsCIP program is sub-
stantial; MsCIP is a 30–40 year program executed during 
three separate phases, with the initial phase estimated 
to cost over $1.01 billion USD (MsCIP 2009). Projects 
under MsCIP were selected to be compatible with the State 
Coastal Restoration Plan, and are expected to eventually 
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restore of over 3,000 acres of coastal forest and wetlands 
and nearly 30 miles of beach and dune restoration. MsCIP 
encompasses the three Mississippi coastal counties of Han-
cock, Harrison, and Jackson, and is explicitly tasked with 
identifying cost-effective programs that actively improve 
coastal ‘resiliency’ through extensive ecological restoration 
and hazard mitigation programs (MsCIP 2009; Figure 1). 
‘Resilience’ has been promoted as a concept to guide the 
management of social-ecological systems (Schluter and 
Pahl-Wostl 2007), and can broad be defined as the ability 
of a system to cope with disturbance and adapt under stress 
to maintain structure and function (for more in-depth 
definitions, see Holling 1973, Holling 2009). MsCIP opera-
tionalizes this concept by identifying solutions to hurricane 
and storm damage, saltwater intrusion, and related water 
resource problems in coastal Mississippi. These solutions 
are intended to “render the region more resilient and less 
susceptible to damages resulting from future coastal storm 
events” (MsCIP 2009, Pg. 1–3).

MsCIP Spatial Decision Support System (SDSS)
Wetland restoration and enhancement were critical to the 
wider MsCIP aims of ecological restoration and flood miti-
gation (MsCIP 2009). Developed by Lin and Kleiss (2007), 
the SDSS was created to rapidly identify and prioritize 
possible wetland restoration areas across the extensive geo-
graphic area impacted by Hurricane Katrina. Additionally, 
the SDSS evaluates potential sites within a larger watershed 
and landscape context, allowing for a more comprehensive 
evaluation of the broader ecological system.

The stated objective of the SDSS is to locate suitable 
wetlands sites that “. . . provide quality wildlife habitat and 
storm and flooding protection (Lin and Kleiss 2007, Pg. 2)”. 
The SDSS operates within a two-tier framework, first iden-
tifying potential restoration sites through binary weighting 
of several variables. Next, these potential restoration sites 
are analyzed based on four performance metrics, the results 
of which rank potential sites for wetland restoration on: 
1) flood risk reduction; 2) wetland ‘restorability’; 3) provi-
sion of wildlife habitat; and 4) ‘Other,’ which we will refer 
to as ‘infrastructure connectivity’.

Figure 1. Jackson, Hancock, and Harrison County, MS parcel and land value data (2012 USD).
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Figure 2. Comparison of potential restoration sites in original and modified MsCIP spatial 
decision support system (SDSS).

Identifying Potential Restoration Sites
A key assumption of the SDSS is that it is only intended to 
locate and restore wetlands on privately held, previously 
developed land. In order to create a study area based on this 
condition, three variables were used: storm damaged areas; 
100–year floodplains; and non-natural land cover. Use of 
these variables was justified by noting that land damaged 
by Hurricane Katrina and within the 100-year floodplain 
would be significantly cheaper to acquire by MsCIP.

Non-natural land cover was determined by selecting the 
following categories from the Mississippi Department of 
Marine Resources (MDMR) 2001 land cover data (based 
on the resolution of the MDMR, the SDSS employs raster 
datasets at a 10 m resolution): high/medium density urban 
(including residential, commercial, and industrial), crop-
land/pasture/grassland, upland sand/barren, wet sand/
barren, wet cutover land, and upland cutover land. Any 
raster cell that fell within the binary parameters detailed 
above was identified as a potential restoration area. Finally, 
any potential areas smaller than one contiguous acre were 
removed. In total, 1,086 total potential restoration sites 
were located covering 7,892 acres (Lin and Kleiss 2007; 
see Figure 2).

Assessing Wetland Function and Prioritization
With the study area determined, the SDSS uses four per-
formance metrics to determine wetland suitability and 
prioritization: flood risk reduction, wetland ‘restorability,’ 
provision of wildlife habitat, and infrastructure connec-
tivity. The wetland restorability metric included variables 

aimed at measuring “.  .  . the suitability of an area to be 
a functioning and sustainable wetland (Lin and Kleiss 
2007, Pg. 6)”. Variables aimed at measuring the suitability 
of wetlands for storm and flood mitigation and quality 
wildlife habitats were included in the storm surge/flood 
protection and habitat metrics, respectively. The fourth 
metric, infrastructure connectivity, included three unique 
variables, two of which measured whether potential resto-
ration locations overlap with potential future MDMR resto-
ration projects. The final variable concerned Katrina storm 
damage, and was used as a measure of the government’s 
ability to purchase privately owned property (‘property 
buy-out potential’; Lin and Kleiss 2007). A complete listing 
of the variables that comprise each metric, as well as their 
respective scaled scores, is located in Table 2.

Specific scoring distributions varied between variables; 
the habitat metric drew on grouping and distribution 
information (excluding core-area ratio measurements) 
from O’Hara et al.’s (2000) SDSS for the Yazoo Backwater 
area in Mississippi. Contrasting this, for flooding, the SDSS 
drew on a ‘wetness index,’ articulated as a measure of “. . . 
potential saturation in an area as compared to its surround-
ing landscape . . .” (Lin and Kleiss 2007, Pg. 6). The wetness 
index and core area ratios were divided according to equal 
distribution across the range of values. This approach has 
the effect of placing equal weight on each percentile of each 
variable’s distribution. Unfortunately, this still does not 
measure the marginal effect of each variable on the benefits 
or costs of restoration. For the remaining multi-categorical 
variables, scores were distributed uniformly across the 
range. For true/false variables, true conditions were given 
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Table 2. Original MsCIP SDSS metric design (Lin and Kleiss 2007), variable list, and scaled score distribution.

Function Variable Raw Value Scale Score

Provision Of Wildlife  
Habitat

0–0.07 0
Core Area Ratio 0.07–0.15 5

> 0.15 10

1–10 0
Block Size (acres) 10–320 5

> 320 10

0–50 0
Distance to Roads (m) 50–500 3

> 500 5

0–150 5
Distance to Open Water (m) 150–300 3

300–750 1

0–150 5
Distance to Protected Areas (m) 150–300 3

300–750 0

Wetland Restorablilty

Hydric Soils
1 20
0 0

–10.6–1.44 0
Wetness Index 1.44–13.5 5

13.5–25.6 10

0–60 10
Distance to Seed Source (m) 60–120 5

> 120 0

Flood Risk Reduction

Depressions
1 15
0 0

5 1
4 3

Storm Surge Capacity 3 5
2 8
1 10

Stream Buffer
1 15
0 0

Infrastructure Connectivity

MDMR Restoration Sites
1 3
0 0

Damage Level
1 3
3 1

6 0
Proposed Coastal Reserves 1 3

0 0
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positive values, with false receiving negative scores (Lin 
and Kleiss 2007). Variable weighting was informed by the 
professional judgments of the authors, augmented by con-
sultations with MDMR and U.S. Fish and Wildlife Service 
personnel (Lin and Kleiss 2007). As we have discovered in 
our literature review, this is an important limitation of both 
this model and the GIS-based restoration prioritization 
approach, generally.

The total for each of the four performance metrics were 
calculated by adding up the scores for each respective vari-
able. The total scores for the fourth metric, infrastructure 
connectivity, were added to the total sum for each of the 
three remaining metrics; the SDSS provided no rationale 
for why the fourth metric was represented in this manner 
within the model, or why those variables could not be con-
tained more traditionally within the other metrics (Lin and 
Kleiss 2007). To reach a final suitability score, the metric 
scores for each raster cell (flood risk reduction, wetland 
‘restorability,’ and provision of wildlife habitat) were aver-
aged together with equal weighting. To account for uneven 
maximum metric scores, wetland restorability and storm/
flood protection were scaled accordingly (multiplied by 
0.898). No specific justification was provided for the equal 
metric weighting structure (Lin and Kleiss 2007). Final 
average scores were reclassified through equal distribution 
onto a scale of one to five, with five being the most suit-
able, with the highest restoration performance potential, 
and one being the lowest. The SDSS’s final prioritization 
of restoration sites is shown in Table 3.

As we saw in the literature review within this area, a 
major question surrounds the weighting technique when 
applying professional judgments. Ideally, each indicator 
variable should be related to either the benefits or costs of 
restoration. For example, we want to determine: how much 
does a one unit change in each indicator variable increase 
the quality of the restoration site—i.e., reduce flooding risk, 
improve habitat, and enhance water quality? Likewise, how 
much does a one-unit change in each variable increase or 
decrease the cost of its acquisition and restoration?

Leveraging the Literature to 
Improve MsCIP’s SDSS

As discussed earlier, the MsCIP SDSS model was chosen 
for this case study based on its potential to function as an 
extensible framework for similar prioritization models for 
wetland restoration in the future. However, on-site field 
observations of sites recommended by the SDSS deter-
mined that the model was not particularly accurate; efforts 
to ground-truth sites scored as high-priority restoration 
locations by the model’s remote sensing data found sev-
eral to be either low quality or un-restorable (e.g., require 
expensive buyouts of already-developed land). The incon-
gruence between model results and actual realties on the 
ground indicate the need for some improvements (16 sites 
of 1086 identified were visited; 1.5%).

Unfortunately, due to intense time constraints, no 
attempt was made recalibrate variable weighting based on 
ground-truthing, nor was any model validation performed 
(e.g., using calibration data from one county to estimate 
locations of high priority sites in other counties). With-
out well-designed ground-truthing efforts (i.e., random 
samples of sites rated at varying degrees of priority, in dif-
ferent locations throughout the study region), it is difficult 
to conclusively improve the outcomes associated with the 
SDSS. However, informed by our literature review, we can 
identify and integrate some of the best practices observed 
in other models into the SDSS, thereby demonstrating 
ways to improve the reliability and performance of similar 
models in the future.

Step 1: New wetland identification process 
( population of possible restoration sites)
To do this, we first comprehensively re-tooled the way the 
SDSS initially identifies potential restoration sites (using 
the same 10 m raster cell resolution as the original MsCIP 
SDSS). In addition to the three variables included in the 
original model, we added a fourth binary variable: the 
presence of hydric soil. Including the presence of hydric soil 
as a binary variable, rather than as a piece of a larger per-
formance metric, improves the model in a number of ways. 
We added a presence of hydric soil into the model because 
it was included in a strong majority of models analyzed in 

Table 3. Original MsCIP SDSS final restoration prioritization scoring distribution for Hancock, Harrison, and Jackson 
Counties, MS (total sites and acres).

Classified  
Value

Provision of  
Wildlife Habitat

Wetland  
‘Restorability’

Flood Risk  
Reduction

All  
Functions

# of Sites Total Acres # of Sites Total Acres # of Sites Total Acres # of Sites Total Acres
1 101 255 66 396 26 93 48 156
2 452 1,633 248 1,596 531 3,933 243 1,520
3 314 3,608 178 2,703 402 3,405 556 4,702
4 152 1,970 405 2,665 78 325 204 1,355
5 67 425 189 532 49 135 35 159
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our literature review (see Table S1). For the nine models 
that employed binary variables to create possible restora-
tion sites, six of them used the presence of hydric soils as an 
initial screener. Additionally, the professional community 
has identified the presence of hydric soils as a key indicator 
of either historic wetlands and/or the necessary hydrology 
essential for successful wetland function and vitality (Wil-
liams 2002, Mitsch and Gosselink 2000, Richardson and 
Gatti 1999). This improves the SDSS dramatically from a 
theoretical perspective; instead of selecting and evaluating 
sites that may lack the necessary soil composition to sup-
port wetland systems, locations that have no hydric soils 
are now completely precluded from even being evaluated 
as potential restoration sites (this binary treatment also 
helps to handle the notoriously coarse resolution of hydric 
soil maps).

Step 2: Reforming the filtering process 
for government land purchase
After augmenting the binary conditions that the SDSS used 
to populate possible restoration areas, we modified the 
performance metrics used to rank the sites. As discussed 
earlier, although flood risk reduction and provision of 
wildlife habitat are the major goals of the model, the SDSS 
uses two additional metrics, ‘wetland restorability’ and 
‘infrastructure connectivity’ as further filters for restoration 
site rankings. The key variable in the ‘restorability’ metric, 
the presence of hydric soil, is now represented much more 
strongly in Step 1 of the model’s construction. Much of the 
rationale behind the original SDSS points to the need for 
cost-effective programs, making clear that land acquisition 
costs are an important part of locating potential wetland 
restoration sites.

Therefore, the ‘restorability’ metric was replaced with 
a land value variable (not included in the original SDSS) 
drawn from the total assessed value of the tax parcels 
within the three MsCIP counties (data were obtained from 
the Jackson and Hancock GIS/Mapping Departments and 
the Harrison County Online Mapping and GIS Services 
Division). While we acknowledge that parcel assessed tax 
value is not a perfect measure of land costs, its inclusion 
does facilitate land value data to influence and direct the 
model. While this change in the SDSS does not ensure a 
proper cost-effectiveness analysis (i.e., ranking sites based 
on biophysical restoration benefits to cost ratio), it is a 
move in the right direction. We should note that the land 
parcel value raster dataset covering Jackson, Harrison, and 
Hancock counties was not complete. The files were acquired 
from the respective counties’ GIS departments and contain 
a number of omissions and/or land parcels with “no data”. 
Land data that had no assessed value was not included in 
the final suitability analysis.

We also removed the ‘infrastructure connectivity’ metric 
for two reasons (see variables originally included in this 

metric in Table 2). First, the metric relied on future, hypo-
thetical MDMR restoration projects, which, at the time, 
had yet to be implemented. While the literature typically 
includes a variety of connectivity measures, few studies 
have attempted to add future project connectivity given 
increased uncertainty that this variable adds into the 
model. Given that these variables are not based on cur-
rently existing conditions, and are instead centered on 
potential MDMR restoration projects, we removed them 
from our revised SDSS model. Second, the storm damage 
variable was included to approximate land that offered “. . . 
a better opportunity for buy-outs (Lin and Kleiss 2007, Pg. 
15)”. Our previous inclusion of a robust land cost metric 
more directly models potential areas for government land 
purchases (‘buy-outs’) than storm damage zones.

Step 3: Creating a stronger focus on habitat 
provision and flood risk reduction
Next, we substantially altered the two primary performance 
metrics: wildlife habitat provision and flood risk reduction. 
Starting with wildlife habitat provision, we kept three out of 
the five original variables intact, including core-area ratio, 
distance to roads, and distance to protected areas.

We removed distance to open water from the model and 
replaced it with a new metric aimed at assessing wetland 
connectivity based on the proximity of potential restora-
tion sites to wetlands identified in the National Wetland 
Inventory (NWI) (Tiner 1997). We did this through a 
“Near” Analysis in ArcGIS 10.0 on NWI classified wetlands 
to locate closest potential restoration sites. Looking at the 
literature review on this topic, we can inform our revisions 
to the MsCIP SDSS through inclusion of existing classified 
wetlands as a connectivity measure. We hypothesized that 
this could improve the model’s performance given that the 
original SDSS lacked any sort of variable that connected the 
proximity of potential restoration sites to currently existing 
wetlands. This is a measure that is strongly advocated for 
throughout many previous studies that we analyzed due to 
the presence of existing wetland hydrologic regimes and 
improved habitat connectivity (Brophy 2005, Brown and 
Strayner 1994, Kauffman-Axelrod 2010, Liu et al. 2006, 
Richardson and Gatti 1999, Strager et al. 2010, Schleupner 
and Schneider 2013).

Next, we removed minimum site size restrictions because 
the presence of a variable measuring core area ratio cap-
tured a more sophisticated measure of this factor. Evidence 
suggests that core area ratio is far more important than a 
simple area measurement in determining sustainable wild-
life habitats (Collinge 1996, BenDor et al. 2009). However, 
it is important to note that core-area ratio measures may 
not apply as well for long, linear systems like rivers.

We augmented the storm/flood protection metric more 
extensively than the habitat metric keeping only two of the 
variables, including the indicator of topographic depressions 

http://uwpress.wisc.edu/journals/pdfs/ERv33n04_article01_Widis_SupplementaryMaterials.pdf
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and storm surge/flood protection. Almost half of the models 
analyzed in our literature review used some measure of 
hydrologic connectivity when assessing wetland mitiga-
tion suitability and performance potential. To incorporate 
hydrologic connectivity, we first altered the stream buffer 
variable to focus on proximity to first-order streams, as those 
wetlands have the greatest impact on desychronization 
of stream flow prior to reaching watershed outfall points 
(Cedfeldt et al. 2000). In addition, we re-introduced an 
original SDSS variable ( previously in the habitat provision 
metric), wetland block size, which is a simple calculation of 
the area of contiguous potential restoration sites, and is a 
key variable in determining successful wetland hydrologic 
function, including flood attenuation, water storage, and 
water quality (Cedfeldt et al. 2000, Huang et al. 2010, Ausseil 
et al. 2007, Brophy et al. 2005, Liu et al. 2006).

Step 4: Modified scoring and weighting system
We modified the SDSS scoring and weighting system to 
improve the reliability and performance of the model. 
In order to make baseline comparisons between the two 
models, we kept the scoring framework (the categories or 
‘bins’ associated with the range of data for each variable) 
from the original SDSS largely intact. Variable scoring 
distribution and classification followed the original SDSS 
method of equitable distribution across the score range. 
However, we want to note several issues in this, or any 
previous, discussion of variable weighting and inclusion. 
While normalizing scores—as was done in the original 
MsCIP SDSS—to make each variable evenly weighted 
(e.g., re-scaling variables such that each increment along 
the scale is equally important) carries a broad type of face 
validity, there is nothing in the current range of these vari-
ables that tells how important a given unit change in each 
of them is to the general public, or to the decision makers 
who must choose on their behalf.

The majority of the multi-categorical variables were 
equally weighted, with each individual variable broken 
down into three quintiles. Each variable was given a score of 
five, ten, or fifteen points, with five representing the lowest 
performing and fifteen the highest (see Table 4). The ‘storm 
surge capacity’ variable’s distribution was left intact from the 
original SDSS. This layer projects the landward extent of 
storm surge resulting from category 1–5 hurricanes, with 
the highest scores going to sites with the greatest threat and 
frequency of flooding (Lin and Kleiss 2007). The land value 
variable was also unique and did not follow a quintile dis-
tribution; due to the wide variation in this variable’s values, 
we estimated reasonable classification values. Finally, for 
binary (true/false) variables, true conditions were given 
positive scores, with false receiving a zero.

Instead of the equal weighting system used in the original 
SDSS, we gave variable weights to variables in each of the 
three performance metrics (flood risk reduction, wildlife 
habitat provision, and land costs). Like the original SDSS, 

to account for the uneven potential point total between 
the flood risk reduction metric (55 points) and the land 
value and wildlife habitat metrics (each 60 points), the two 
higher scoring metrics were scaled accordingly (multiplied 
by 0.9166). Recognizing the imperfections in our land 
value estimate, while also acknowledging that the MsCIP 
makes very clear that cost-benefit analysis should not drive 
decision-making, the land value metric is weighted at 20%. 
Provision of wildlife habitat and flood risk reduction was 
each allocated 40%. Given that the SDSS makes no clear 
indication as to favoring wildlife habitat protection over 
flood storage attenuation, it only seems appropriate to 
weight those two metrics evenly. To determine the final 
suitability scores, the data were broken down on a scale of 
one to five, with five being the most suitable and one being 
the least, using quintile classification.

Results
There are several significant differences between our model 
results and those produced by the original MsCIP SDSS. 
First, our model identified fewer potential restoration loca-
tions. While the original SDSS located 1,086 total sites 
covering 7,892 acres (Lin and Kleiss 2007), the modified 
version, limited by the inclusion of a hydric soils binary 
variable, produced 807 sites encompassing 4,715 acres, a 
40%reduction in total acreage (see Figure 2 and Table 5). 
In terms of final prioritization scoring, the two models 
differed substantially (tested using chi-square goodness 
of fit test; c2 = 109.6 for number of sites identified and c2 
= 3363.2 for acreage; both p < 0.001). While the classified 
values for the two models were quite similar (see Figure 
3), there was a significant difference between the statisti-
cal distributions of final scores (1–5) assigned to potential 
restoration sites. This substantive difference suggests that 
our model may be more discerning and conservative in 
its ranking of average to below-average restoration sites, a 
potentially substantial upgrade to the original SDSS model 
as on-site field observations revealed inaccuracies in the 
model’s results.

Sensitivity Modeling
As mentioned previously, variable weighting was incon-
sistent throughout the 27 studies consulted in our litera-
ture review of GIS-based wetland prioritization models. 
In order to assess the sensitivity of our own results to 
various weighting equations, we explored four alternative 
scenarios, each of which significantly altered the specific 
weights attached to the three performance metrics. The 
original and baseline modified SDSS model weights pro-
vision of wildlife habitat and flood risk reduction each 
at 40% and the land value metric at 20% (Figure 4A and 
5B). We found that across the board, when changes were 
made to metric weighting, these had significant impacts 
on the distribution of suitability scores across our potential 
restoration sties.
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Table 4. Modified SDSS metric design, variable list, and scaled score distribution. Units for block size have changed 
from acres to m2.

Variable Raw Value Scale Score

Provision of Wildlife Habitat

0–0.000002 5
Core Area Ratio 0.000002–0.000081 10

> 0.000081 15

0–109.40 15
Wetland Connectivity (m) 109.40–265.69 10

> 265.69 5

0–1,147.37 15
Distance to Protected Areas (m) 1,147.38–2,847.18 10

> 2,847.18 5

0–9.779 5
Distance to Roads (m) 9.78–41.56 10

> 41.56 15

Land Value

0–500,000 60
500,001–1,000,000 54

1,000,001–2,000,000 48
2,000,001–4,000,000 42

Assessed Taxable Value (2006) 4,000,001–8,000,000 36
8,000,001–16,000,000 30

16,000,001–32,000,000 24
32,000,001–64,000,000 18

64,000,001–128,000,000 12
>128,000,000 6

Flood Risk Reduction

Depressions
1 15
0 0

3,131.97–25,908.85 5
Block Size (m2) 25,908.96–159,316.28 10

> 159,316.28 15

5 1
4 3

Storm Surge Capacity 3 5
2 8
1 10

0.09–112.38 15
Hydrologic Connectivity (m) 112.39–232.33 10

> 232.34 5

The first scenario assumed equal weighting across the 
three metrics (Figure 4C). Compared to our model, there 
was an increase of 32% in sites receiving a suitability score 
of four or above, when all three of our metrics received 
equal weighting. The greatest decrease in suitability scoring 
was in sites receiving a two or below, which dropped 29% 
overall (see Figure 4G).

Next, we reversed the weighting between the metrics, 
first giving provision of wildlife habitat a 20% weight 
(Figure 4D; flood risk reduction and land value metrics 

Table 5. Final restoration priority score distribution 
of modified MsCIP SDSS for Hancock, Harrison, and 
Jackson Counties. 

Classified Value # of Sites Total Acres
1 26 57
2 282 766
3 415 1,424
4 111 489
5 12 41
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Figure 3. Comparison of final priority score distribution between modified and original MsCIP SDSS.

each received 40%) and then assigning a 20% weight to 
flood risk reduction (Figure 4E; provision of wildlife 
habitat and land value each received 40%). Compared to 
our modified SDSS model, both weighting iterations pro-
duced distinct results. There was again a sharp increase 
in suitability scoring for values four and above in both 
scenarios (47% and 54%, respectively). Once again, simi-
larly to the equal weighting scenario, there was a severe 
decline in the number of low scoring (two or below) 
sites, with both augmented models seeing a decline of 
29% (see Figure 4G).

Finally, we removed the newly created land value crite-
rion entirely, distributing equal weighting across the two 
remaining metrics (Figure 4F). The results were distinctly 
different from the previous scenarios, with a more equal 
distribution of scoring than either of the three sensitivity 
models and our own modified SDSS. Forty percent of the 
total sites received a suitability score of two or below, with 
27% receiving 4 or above (Figure 4G).

The results of our sensitivity analysis underscore the 
critical importance of variable weighting in multi-criteria 
or multiple attribute decisions analysis. Even relatively 

minor alterations in variable weighting can result in sig-
nificant changes in final results. Given the context of GIS-
based wetland prioritization models, where no pattern 
or coherent method to variable weighting exists in the 
literature (even within models that shared similar objec-
tives), there exists a clear need for a more standardized, 
uniform approach. The results of our sensitivity model 
stress the need for greater ground-truthing and some form 
of iterative calibration of variable weighting.

Discussion

Our literature review revealed that across the existing 27 
models, there were few similarities in models’ stated objec-
tives, specific variables, or respective weighting/scoring sys-
tems. Given the wide disparity of variables, and weighting 
mechanisms underlying GIS-based wetland prioritization 
models (even in models with similar objectives), it is clear 
that there is an acute lack of consensus within the literature. 
Each model presents its own unique rationale for defin-
ing identification variables, performance criteria, and the 
comparative value of specific indicators. Moreover, while 
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Figure 4. Sensitivity Analysis of changes to SDSS. Panel A: Final restoration suitability scores for original SDSS model 
(Lin and Kleiss 2007). Panel B: Baseline suitability scores for modified SDSS model.

continued
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Figure 4. (continued) Panel C: Equal weighting of three performance metrics. Panel D: Lower wildlife metric weight. 
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Figure 4. (continued) Panel E: Lower flood storage metric weight. Panel F: Land value metric removed from 
performance metrics.

continued
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most of the studies that employ GIS-based techniques may 
claim that they employ the watershed approach, most fail 
to employ the approach as it was originally conceived, 
whereby information on spatial relationships between 
wetlands (and uplands), watershed position, and inferred 
interactions based on flow of water, sediment, and mate-
rials are used to affect the ultimate ratings of restoration 
potential. Instead, many use static GIS overlays to develop 
rankings for specific locations instead of employing a more 
comprehensive watershed analysis.

While the aim of our literature review has not been to 
present any sort of definitive resolution to the ongoing 
debate over wetland prioritization, our hope is that by 
compiling and aggregating relevant studies, researchers will 
be able to access and review the emerging literature more 
quickly and effectively and thus improve their own work. 
There is an extensive literature on ecosystem valuation and 
ecosystem service quantification that could inform the esti-
mation of weights in prioritization models (Barkman et al. 
2008). Taking a rigorous stance, weights should be chosen 
based on an explicit theory about the relative importance 

of each factor used in a prioritization model (Vrana et al. 
2012). Specifically, drawing from general theories about 
land suitability analysis, scores and weights should be 
based on functional relationships between attributes of 
potential sites to provide ecosystem services and the rela-
tive importance that the public places on those services 
(Malczewski 1999). The weakness of the literature in this 
area becomes even more apparent given the widespread 
lack of any meaningful sensitivity analysis around changes 
to the weights assigned to various factors in models. The 
benchmark (default) weights and the ranges over which 
they are varied seem completely ad hoc, with no ground-
ing in any functional relationships between site attributes 
and ecosystem service flows or the values people place on 
those flows.

Guided by the results of the literature review, our modi-
fied SDSS attempted to improve the reliability and perfor-
mance of the critical tool in the MsCIP plan for determin-
ing future restoration sites and guiding public investments. 
While the model is still un-informed by widespread field 
calibration and validation (including local knowledge 

Figure 4. (continued) Panel G: Final suitability score distribution among sensitivity analyses.
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about the quality of potential restoration sites), a major 
substantive improvement is that the modifications make 
the SDSS more discerning and conservative while rank-
ing average to below-average restoration sites. However, 
our results point to substantial opportunity for creating a 
more flexible and accurate SDSS for use in other USACE-
funded restoration programs, or other large-scale programs 
in domestic or international contexts. Future efforts will 
need to implement stronger field calibration and valida-
tion of models, as well as test the sensitivity of weighting 
schemas as a way of alleviating some of the uncertainty 
over weighting and scoring systems that is seen widely in 
the literature.

Integration with other ecosystem services models (e.g., 
INVEST—Nelson et al. 2009; ARIES—Nelson and Daily 
2010) would greatly strengthen the SDSS, and aid the 
USACE and other organizations in achieving future high 
performing, successful wetland restoration efforts. While 
we feel that the modified SDSS achieves both these aims, 
the land value metric could be substantially improved 
with a more robust and complete dataset. County assessed 
tax value is an excellent starting point for introducing a 
financial variable into the SDSS, though it is not a perfect 
substitute for data on market-driven land values (i.e., sales 
data). A more in-depth strategy could involve an economic 
approach whereby weights are applied in proportion to the 
sum of stakeholders’ willingness to pay for additional eco-
system services. Additionally, from a political point of view, 
it is quite important to establish a strong communication 
strategy with surrounding landowners and stakeholders. 
This strategy should use the results from SDSS tools as a 
first pass understanding where wetland restoration will be 
most effective and where it will likely be accepted by the 
public (and those who influence decisions about restoration 
investments).

Although the modified SDSS is likely an improvement 
on the original, this could only be verified through on-site 
ground-truthing. Unfortunately, the limited amount of 
ground-truthing and model validation across the reviewed 
literature, and the complete absence of any iterative cali-
bration of variable weighting, remains perhaps the most 
serious problem with the current way that wetland restora-
tion prioritization models are constructed. Calibrating the 
model based using randomly sampled ground-truth data 
and ordinal or multinomial logistic regression modeling 
(Train 2003; Long and Freese 2014) would create a better 
system for variable weighting, improving accuracy and 
effectiveness of our modified SDSS. Finally, model valida-
tion would provide further verification of the applicability 
of our new GIS-based wetland suitability and prioritization 
model to geographies outside of the MsCIP counties (e.g., 
other gulf coast counties).

Acknowledgements
We would like to thank Jeffrey Lin for his assistance with the 
MsCIP model and Susan Rees for her gracious assistance in 
learning about the MsCIP program. This work was funded in 
part by the Frederick J. Clarke Visiting Scholar Program of the 
U.S. Army Corps of Engineers, Institute for Water Resources.

References
Ausseil, A. G. E., J.R. Dymond and J.D. Shepherd. 2007. Rapid map-

ping and prioritisation of wetland sites in Manawatu-Wanganui 
region, New Zealand. Environmental Management 39:316–325.

Barkmann, J., K. Glenk, A. Keil, C. Leemhuis, N. Dietrich, G. Gerold, 
R. Marggraf. 2008. Confronting unfamiliarity with ecosystem 
functions: the case for an ecosystem service approach to envi-
ronmental valuation with stated preference methods. Ecological 
Economics 65:48–62.

BenDor, T., J. Westervelt, J.P. Aurambout and W. Meyer. 2009. Sim-
ulating population variation and movement within fragmented 
landscapes: An application to the gopher tortoise (Gopherus poly-
phemus). Ecological Modeling 220:867–878.

Berman, M., T. Rudnicky, H. Berquist and C. Hershner. 2002. Proto-
cols for implementation of a GIS-based model for the selection 
of potential wetlands restoration sites southeastern Virginia. 
Center for Coastal Resources Management at Virginia Institute 
of Marine Science, College of William and Mary.

Brophy, L. 2005. Tidal wetland prioritization for the Siuslaw River 
estuary. Corvalis, OR: Green Point Consulting and Siuslaw 
Watershed Council: Corvalis, OR and Mapleton, OR. (Online) 
Retrieved on May 1, 2013 from: www.greenpointconsulting.
com/PDFs/ Sius_ESTPRI_FINAL_28nov05_complete_p.pdf.

Brown, C.R. and F.O. Strayner. 1994. Toward no net loss: A meth-
odology for identifying potential wetland mitigation sites using 
a GIS. Urban and Regional Information Association 594–607.

Brown, S. and P. Veneman. 2001. Effectiveness of compensatory wet-
land mitigation in Massachusetts, USA. Wetlands 21:508–518.

Cedfeldt, P.T., M.C. Watzin and B.D. Richardson. 2000. Using GIS to 
identify functionally significant wetlands in the northeastern 
United States. Environmental Management 26:13–24.

Cole, C.A. and D. Shafer. 2002. Section 404 wetland mitigation 
and permit success criteria in Pennsylvania, USA, 1986–1999. 
Environmental Management 30:508–515.

Collinge, S. 1996. Ecological consequences of habitat fragmentation: 
Implications for landscape architecture and planning. Landscape 
and Urban Planning 36:59–77.

Copeland, H.E., S.A. Tessman, E.H. Girvetz, L. Roberts, C. Enquist, A. 
Orabona, S. Patla and J. Kiesecker. 2010. A geospatial assessment 
on the distribution, condition, and vulnerability of Wyoming’s 
wetlands. Ecological Indicators 10:869–879.

Davenport, T.E.,N.J. Phillips, B.A. Kirschner and L.T. Kirschner. 1996. 
The watershed protection approach: A framework for ecosys-
tem protection. Water Science and Technology 33(4–5):23–26.

Donigian, A.S. 2002. Watershed model calibration and validation: 
The HSPF experience. National TMDL Science and Policy 44–73.

Drummond, W. J., and S.P and French. 2008. The future of GIS in 
planning: Converging technologies and diverging interests. 
Journal of the American Planning Association 74:161–174.

ELI and TNC. 2014. Watershed Approach Handbook: Improving 
Outcomes and Increasing Benefits Associated with Wetland 
and Stream Restoration and Protection Projects. Environmental 
Law Institute and The Nature Conservancy: Washington, D.C.



376 •  December 2015 ECOLOGICAL RESTORATION 33:4

Holling, C.S. 1973. Resilience and stability of ecological systems. 
Annual Review of Ecological Systems 4:1–23.

Holling, C.S. 2009. Engineering Resilience versus Ecological Resil-
ience. In L.H. Gunderson, C.R. Allen and C.S. Holling (ed), Foun-
dations of Ecological Resilience Island Press, Washington, D.C.

Huang, N., Z. Wang, D. Liu and Z. Niu. 2010. Selecting sites for con-
verting farmlands to wetlands in the Sanjiang Plain, north-
east China, based on remote sensing and GIS. Environmental 
Management 46:790–800.

Kauffman-Axelrod, J. L. and S.J. Steinberg. 2010. Development and 
application of an automated GIS based evaluation to prioritize 
wetland restoration opportunities. Wetlands 30:437–448.

Kramer, E.A. and S. Carpendo. 2009. A statewide approach for 
identifying potential areas for wetland restoration and miti-
gation banking in Georgia: An ecosystem function approach. 
Presented at the 2009 Georgia Water Resources Conference, 
University of Georgia.

Lin, J. P. and B.A. Kleiss. 2007. A wetland restoration spatial deci-
sion support system for the Mississippi Gulf Coast. U.S. Army 
Corps of Engineers.

Liu, C., P. Frazier, L. Kumar, C. MacGregor and N. Blake. 2006. Catch-
ment-wide wetland assessment and prioritization using the 
multi-criteria decision-making method TOPSIS. Environmental 
Management 38:316–326.

Long, J.S. and J. Freese. 2014. Regression models for categorical depen-
dent variables using Stata (3rd ed.). College Station, TX: Stata 
Press.

Malczewski, J. 1999. GIS and Multicriteria Decision Analysis. New 
York, NY: John Wiley and Sons.

McAllister, L.S., B.E. Peniston, S.G. Leibowitz, B. Abbruzzese and J.B. 
Hyman. 2000. A synoptic assessment for prioritizing wetland res-
toration efforts to optimize flood attenuation. Wetlands 20:70–83.

McCauley, L.A. and D.G. Jenkins. 2005. GIS-based estimates of 
former and current depressional wetlands in an agricultural 
landscape. Ecological Applications 15:1199–1208.

Mitsch, W. and J.G. Gosselink. 2000. Wetlands. New York, NY: Wiley.
Moreno-Mateos, D., U. Mander and C. Pedrocchi. 2010. Optimal loca-

tion of created and restored wetlands in Mediterranean agricul-
tural catchments. Water Resources Management 24:2485–2499.

MsCIP. 2009. Mississippi Coastal Improvements Program (MsCIP) 
Hancock, Harrison, and Jackson Counties, Mississippi: Com-
prehensive Plan and Integrated Programmatic Environmen-
tal Impact Statement. Mobile District, U.S. Army Corps of 
Engineers.

Mobile, AL.Nelson, E.J. and G.C. Daily. 2010. Modelling ecosystem 
services in terrestrial systems. F1000 Biology Reports 2:53.

Nelson, E., G. Mendoza, J. Regetz, S. Polasky, H. Tallis, D. Cameron, 
K.M.A Chan, G.C. Daily,J. Goldstein and P.M. Kareiva. 2009. 
Modeling multiple ecosystem services, biodiversity conserva-
tion, commodity production, and tradeoffs at landscape scales. 
Frontiers in Ecology and the Environment 7:4–11.

Newbold, S. 2005. A combined hydrologic simulation and land-
scape design model to prioritize sites for wetlands restoration. 
Environmental Modeling and Assessment 10:251–263.

NRC. 2001. Compensating for wetland losses under the clean water 
act. Washington, D.C.: National Academy Press.

O’Hara, C.G., A.A. Davis, and B.A. Kleiss. 2000. A Decision Sup-
port System for Prioritizing Forested Wetland Restoration in 
the Yazoo Backwater Area (Report 00—4199). U.S. Geologi-
cal Survey, Pearl, MS. ms.water.usgs.gov/ms_proj/wetlands/
restoration_dss/wrir00-4199.pdf.

Ouyang, N.L., S.L. Lu, B.F. Wu, J.J. Zhu and H. Wang. 2011. Wetland 
restoration suitability evaluation at the watershed scale—A case 
study in upstream of Yongdinghe River. Procedia Environmental 
Sciences 10:1926–1932.

Palmeri, L. and M. Trepel. 2002. A GIS-based score system for siting 
and sizing of created or restored wetlands: Two case studies. 
Water Resources Management 16:307–328.

Prato, T. 1999. Multiple attribute decision analysis for ecosystem 
management. Ecological Economics 30:207–222.

Refsgaard, J.C. 1997. Parameterisation, calibration and validation of 
distributed hydrological models. Journal of Hydrology 198:69–97.

Reiss, K.C., E. Hernandez and M.T. Brown. 2009. Evaluation of permit 
success in wetland mitigation banking: A Florida case study. 
Wetlands 29:907–918.

Richardson, M.S. and R.C. Gatti. 1999. Prioritizing wetland restora-
tion activity within a Wisconsin watershed using GIS modeling. 
Journal of Soil and Water Conservation 54:537–542.

Russell, G.D., C.P. Hawkins and M.P. O’Neill. 1997. The role of GIS in 
selecting sites for riparian restoration based on hydrology and 
land use. Restoration Ecology 5:56–68.

Schleupner, C. 2010. GIS-Based Estimation of Wetland Conser-
vation Potentials in Europe. Pages 193–209 in D. Taniar, O. 
Gervasi, B. Murgante, E. Pardede and B. Apduhan (eds), Com-
putational Science and Its Applications (ICCSA 2010) Berlin, 
Germany: Springer.

Schleupner, C. and U.A. Schneider. 2013. Allocation of European wet-
land restoration options for systematic conservation planning. 
Land Use Policy 30:604–614.

Schluter, M. and C. Pahl-Wostl. 2007. Mechanisms of resilience in 
common-pool resource management systems: An agent-based 
model of water use in a river basin. Ecology and Society 12:4.

Seuring, S. and M. Müller. 2008. From a literature review to a con-
ceptual framework for sustainable supply chain management. 
Journal of Cleaner Production 16:1699–1710.

Strager, M.P., J.T. Anderson, J.D. Osbourne and R. Fortney. 2010. A 
three-tiered framework to select, prioritize, and evaluate poten-
tial wetland and stream mitigation banking sites. Wetlands 
Ecology and Management 19:1–18.

Tang, Z., X. Li, N. Zhao, R. Li and E.F. Harvey. 2012. Developing a 
restorable wetland index for rainwater basin wetlands in south-
central Nebraska: A multi-criteria spatial analysis. Wetlands 
39:975–984.

Tiner, R. 1997. NWI maps: Basic information on the nation’s wetlands. 
BioScience 47:269.

Torraco, R. 2005. Writing integrative literature reviews: Guidelines 
and examples. Human Resource Development Review 4:356–367.

Train, K. 2003. Discrete Choice Methods with Simulation. Cambridge, 
England: Cambridge University Press.

USACE [US Army Corps of Engineers], EPA [US Environmental 
Protection Agency]. 2008. Compensatory mitigation for losses 
of aquatic resources. Fed Register 70:19594–19705.

Van Lonkhuyzen, R.A., K.E. Lagory and J.A. Kuiper. 2004. Model-
ing the suitability of potential wetland mitigation sites with a 
geographic information system. Environmental Management 
33:368–375.

Vellidis, G., Smith, M.C. Leibowitz, S.G. Ainslie, W.B. and B.A. 
Pruitt. 2003. Prioritizing wetland restoration for sediment yield 
reduction: A conceptual model. Environmental Management 
31:301–312.

Vrana, I., J. Vaníček, P. Kovář, J. Brožek and S. Aly. 2012. A group 
agreement-based approach for decision making in environ-
mental issues. Environmental Modelling & Software 36: 99–110.



December 2015 ECOLOGICAL RESTORATION 33:4  • 377

Whigham, D. 1999. Ecological issues related to wetland preserva-
tion, restoration, creation and assessment. Science of The Total 
Environment 240(1–3):31–40.

White, D. and S. Fennessy. 2005. Modeling the suitability of wet-
land restoration potential at the watershed scale. Ecological 
Engineering 24:359–377.

Williams, K.B. 2002. The potential wetland restoration and enhance-
ment site identification procedure: A geographic information 
system for targeting wetland restoration and enhancement. 
Raleigh, NC: North Carolina Division of Coastal Management, 
Department of Environment and Natural Resources.

Daniel Consorte Widis, Department of Landscape Architec-
ture, Harvard University, Cambridge, MA 02138. 
 
Todd K. BenDor (corresponding author), Department of City 
and Regional Planning and UNC Institute for the Environ-
ment, University of North Carolina at Chapel Hill, 
New East Building, Campus Box #3140, Chapel Hill, NC 
27599-3140, bendor@unc.edu. 
 
Michael Deegan, Institute for Water Resources, U.S. Army 
Corps of Engineers, Alexandria, VA 22315.

Microtus pennsylvanicus. Forbush, E.H. 1907. Useful Birds and Their Protection. Boston, MA: Massachusetts State Board 
of Agriculture. The Florida Center for Instructional Technology, fcit.usf.edu.


