BIG RIVER ROAD SEDIMENT SOURCE ASSESSMENT FINAL REPORT

Prepared for:

The Conservation Fund 14951 A Caspar Road, Box 50 Caspar, CA 95420 Phone: 707-962-0712 • http://www.conservationfund.org/

Prepared by:

Elias J. Steinbuck, PG PO Box 967, Mendocino CA 95460 Phone: 707-937-1248 • Cell: 707-357-0520 e-mail: eliassteinbuck@comcast.net

In collaboration with:

Christopher Blencowe, RPF 633 N Harrison St., Fort Bragg CA 95437 Phone: 707-964-1409 • Cell: 707-972-6768 e-mail: blencowe4@mcn.org

June 3, 2010

TABLE OF CONTENTS

GENERAL INFORMATION	. 3
INTRODUCTION	. 3
REGIONAL SETTING	.4
Geology	. 4
Seismicity	. 4
Soils	
Geomorphology	. 5
METHODS	. 6
RESULTS	. 8
SUMMARY	12
REFERENCES	13
Aerial Photographs	13
Maps and Literature	
AUTHORITY	

LIST OF TABLES

Table 1: "At Risk" Roads Proposed for Decommissioning
Table 2: Summary of Big River Road Sediment Data
Sorted by Site Type and Treatment Immediacy
Table 3: Summary of Big River Road Sediment Data
Sorted by Planning Watershed and Site Type
Table 4: Complete Project Cost Estimate Sorted by Treatment Immediacy

LIST OF FIGURES

Figure 1:	Site	Location	Map	1	of 2	r
-----------	------	----------	-----	---	------	---

- Figure 2: Site Location Map 2 of 2
- Figure 3: Sample Field Form

Figure 4: Watercourse Crossing Fill Volume Calculator

Figure 5: Road Surface Erosion Calculator

Figure 6: Cost Estimates by Treatment Type

ATTACHMENTS

Appendix A: Big River Road Sediment Source Assessment Database 052510.xls

Appendix B: Original Field Forms (113 total)

Appendix C: Original Field Maps (8 total @ 1:12,000 scale)

GENERAL INFORMATION

Property Owner:	The Conservation Fund (TCF)
Contact Person:	Scott Kelly, RPF – Project Leader 707-272-4497
Project Location:	T17N, R16W, Sec. 21-23, 25-29, 32-35 T17N, R15W, Sec. 30; T16N R16W, Sec. 3 MDB&M Comptche 7.5' USGS Topographic Quadrangle Mathison Peak 7.5' USGS Topographic Quadrangle Mendocino County, California
Watershed:	Middle Albion River; Upper Albion River; Laguna Creek Mouth of Big River; & Two Log Creek Planning Watersheds Big River Watershed

INTRODUCTION

The purpose of this road based sediment source assessment was to evaluate approximately 48 miles of forest road for erosion and sediment delivery concerns and propose treatments for road upgrades or decommissioning at sites where >10 yds³ of sediment could potentially reach a watercourse if treatments are not implemented. As directed by TCF staff, this assessment was limited to the portion of the property south of the mainstem of Big River and up to the southern property boundary, an area encompassing over 4,800 acres of timberland, hereafter referred to as the "subject property", and containing approximately 70 miles of forest road. Approximately 22 miles of these roads are within recent or active Timber Harvest Plans (THPs) and were excluded from the assessment at the direction of TCF staff as these have been evaluated during the THP planning and review process. The remaining ~ 48 miles were systematically reviewed as part of this assessment, and are hereafter referred to as the "project roads."

The primary goal of this assessment is to provide a complete inventory of sediment delivery sites associated with the project roads to assist TCF staff with applying for restorative grant funds, and/or as a reference for future road network planning and land management. This project is consistent with TCF goals presented in the Big River and Salmon Creek Forests - Integrated Resource Management Plan (IRMP) to address the protection and enhancement of water quality (TCF, 2009). Consistent with IRMP goals, this assessment has identified several "at risk" road segments where near stream roads may be candidates for decommissioning upon review by TCF forestry staff.

The goal of the proposed road treatments is to minimize road related sediment delivery. Road treatments are consistent with the IRMP (Appendix H: Road Management Plan) where construction of watercourse crossings and road drainage improvements will follow industry standard specifications for low volume forest roads (e.g. PWA, 1994; Weaver and others, 2006). It is commonly known that deleterious quantities of fine grained sediment from road related sources is a common cause of pollution that can degrade the quality of water in watercourses, and adversely affect listed aquatic species or their habitats. Restorative road upgrade work can directly improve habitat conditions by minimizing erosion and sediment delivery to the stream system (PWA, 1994).

This report generally follows guidelines for final reporting of road sediment source assessments as presented in the California Department of Fish and Game (DFG) Habitat Restoration Manual (HRM) (Weaver and others, 2006); specific procedures are described in the *METHODS* section of this report.

REGIONAL SETTING

TCF property reviewed during this assessment is located on slopes of varying aspect and gradient predominately within the Two Log Creek, Laguna Creek, and Mouth of Big River CA Planning Watersheds approximately 4 miles north of Comptche, California (Figures 1 and 2). Elevation ranges from approximately 100 feet along the valley bottom to approximately 800 feet along the ridge top on the southern property boundary. The climate in the region is typical of a Mediterranean climate, with cool wet winters, and warm dry summers. A majority of the precipitation is generated from October to April by a westerly flow of moist air off the Pacific Ocean. Average annual precipitation in the region is approximately 50 inches per year (Goodridge, 1997). Snow provides a relatively insignificant contribution to the hydrologic budget.

Geology

Geologic mapping conducted in the region indicates that the subject sites are underlain by the Coastal Belt Franciscan Complex (Kilbourne, 1983a., 1983b.; Braun and others, 2005). Recent unconsolidated channel deposits composed primarily of sand, silt and gravel are exposed along the active channels along Big River and its larger tributaries. Generally, the Coastal Belt Franciscan consists of greywacke sandstone and shale sequences that display varying degrees of deformation. Shear strength of the bedrock is highly variable and dependent upon the local structure, bedding, and lithology. Field observations on the subject property revealed a range of bedrock conditions from moderately to highly fractured outcrops of thin to massive bedded, hard, competent sandstone to sheared sandstone with relatively low internal strength. The orientation of structural discontinuities was highly variable between localities observed on the subject property; regional characterization of the bedrock structure was beyond the scope of this assessment.

Seismicity

The orientation of the structural grain of the Franciscan complex is controlled by the northwest-southeast trending San Andreas Fault Zone, a right-lateral strike slip fault whose main trace is located offshore approximately 15 miles west of the TCF Big River property. Geologic research indicates the Pacific Plate has been moving north relative to the North American Plate along the San Andreas Fault Zone for the past 30 million years

(Atwater, 1970). The related Maacama Fault Zone trends northwest-southeast down the Ukiah and Willits valleys 15 miles east of the plan area. Based on the most recent documented surface rupture, which occurred in 1906, a probability analysis of the earthquake hazard revealed that the North Coast portion of the San Andreas Fault Zone is capable of producing a magnitude 7.9 earthquake with a 220 year recurrence interval (Petersen and others, 1996).

Soils

The Natural Resource Conservation Service soil survey depicts several soil complexes on the subject property. Formed from the weathering of sedimentary rock, the Irmulco-Tramway complex soils blanket a significant majority of the hillslopes and are characterized by moderate-well drained pale brown loam (Rittiman and Thorson, 2001). Field observations were consistent with the mapped classification. Thickness of the overlying colluvial soil can be highly variable. Generally, colluvium is thin along ridges and upper sideslopes (typically 1-2 feet), and thick (as much as 5-10 feet) within deep swales and local depressions.

Geomorphology

The assessment area is located in steep mountainous terrain where naturally occurring landslides have been identified as a major slope forming process, delivering gravel and wood to the stream system, which provides habitat complexity to populations of aquatic species (Reeves and others, 1995; Swanson and others, 1987). A combination of landsliding, surface erosion, and gully and channel erosion continues to shape the Coast Range Mountains.

Large deep-seated landslides (e.g. translational-rotational landslides and earthflows) commonly occur in the Big River Watershed, some within TCF property, they are generally characterized by a suspended or very slow moving slide mass and deep slide plane extending well into bedrock (Braun and others, 2005). Differential movement within the large slide mass is common where portions of the slide can locally exhibit geomorphic evidence of historical activity while the remaining slide mass appears dormant. A majority of the shallow landslides (e.g. debris slides and flows) occur on slopes over 65% and are concentrated on steep streamside slopes along the outside of meander bends along the mainstem of Big River and its larger tributaries (Braun, 2005). Based on aerial photo analysis most management related shallow landslides originate in cutslopes of forads and skid trails.

METHODS

The methods of this assessment are generally consistent with methods outlined in the DFG HRM (Weaver and others, 2006), and are briefly summarized below.

- Discussions and field review with Scott Kelly, RPF (TCF Project Leader)
- Review of available pertinent maps and literature
- Review of several sets of aerial photographs
- Field reconnaissance and data collection on ~ 48 miles of forest road
- Analysis of the data
 - Culvert sizing
 - Potential sediment delivery estimates
 - Proposed treatment cost estimates
- Quality Assurance / Quality Control
- Preparation of summary maps and report

Initial discussions and field review with Scott Kelly were conducted in December 2009 and January 2010 to identify project goals and refine assessment protocols. Map and aerial photo review of the project roads were conducted at the TCF office in Caspar in December 2009 to identify project road alignments, road construction history, and any anomalous hillslope conditions (e.g. stream diversions, unstable areas). Field data collection was conducted primarily by Christopher Blencowe, RPF (TCF Consultant) from January to March of 2010 under the direct supervision of Elias Steinbuck, PG (TCF Consultant), and involved collection of key site information used to estimate potential sediment delivery volumes and treatment costs. A field form was developed based on recommendations in the DFG HRM to ensure systematic collection of essential field data (Figure 3).

The intention of this assessment was not to document all road related erosion on the subject property, but rather to focus on those areas where a potential for sediment delivery to a watercourse exists. Road erosion that does not have the potential to deliver 10 yds^3 of sediment, but has damaged (or could damage) the road alignment if unmitigated, is summarized by Christopher Blencowe, RPF elsewhere in a summary of road maintenance related issues.

Culvert sizing analysis was conducted using standard empirical methods that incorporate drainage basin attributes and local precipitation data to determine a culvert diameter that would accommodate the 100 year storm event (Cafferata and others, 2004). Analysis of field data to estimate potential sediment delivery volume at watercourse crossings was conducted using repeatable methods where fill slope and dimension data were collected in the field and entered into spreadsheet format during data entry; standard geometric relationships were used to calculate potential sediment delivery volumes (Figure 4). Road surface erosion was estimated over a 10 year period using standard methods and assumptions similar to Weaver and others (2006) as presented in the DFG HRM (Figure 5). Unstable fill volumes were estimated using field measurements and standard geometric relationships.

Treatment costs were determined by estimating a reasonable production rate for each recommended treatment (e.g. per culvert install, per armored fill install, per rolling dip, etc...) based on available literature and experience with similar projects, and applying that to each site; special consideration is always given to complex or high volume sites that may require more equipment time or materials (Figure 6). Often a site will include multiple treatments (e.g. install culvert, stabilize perched fill, and shape the contributing road segment with several rolling dips), however these sites are always mapped and depicted as watercourses as that is the primary pathway for sediment delivery, this is discussed in detail in the *RESULTS* section of this report.

For estimating purposes watercourse crossings were categorically ranked based on relative size (e.g. small, medium, and large for new culverts; small and large for armored fills), and road surfacing was taken into consideration when doing any shaping work (e.g. permanent rocked roads require significant quantities of base rock upon completion of upgrades, seasonal roads do not). Equipment and labor rates were based on TCF supplied current wage rates from similar project work; culvert costs were estimated from up-to-date quotes from local suppliers, rock costs were estimated based on an assumed \$50/yd³ to excavate, sort, and deliver road base or rip-rap from on-site quarries to the project sites.

A concise summary of the essential site data collected in the field and recorded on the original field forms at each site is found in Appendix A and described below.

- Site id # Unique id number recorded on yellow w/white flagging in the field.
- **Site type** Primary process of potential sediment delivery. Many watercourse crossings also contribute sediment from road erosion or landsliding; however, these are mapped as crossings for the purposes of this assessment.
 - CR Watercourse Crossing
 - o RE Road Erosion
 - LS Landslide
- **Road** # TCF road number where the site is located.
- **PWS** CA Planning Watershed where the site is located.
 - o TL Two Log Creek
 - o LC Laguna Creek
 - MB Mouth of Big River
 - MA Middle Albion River
- **Erosion Problem** An estimate of the potential sediment delivery volume presented by delivery process (yds³).
 - Crossing Computed in the office based on field measurements.
 - Road Erosion Computed in the office based on field measurements.
 - Landslide Computed in the field using standard geometric relationships.
- **Problem Description** Summary of the site conditions and erosion problems.
- **Treatment Immediacy** Assessment of the urgency to treat the site based on the magnitude of potential delivery and proximity to Class I or II (H, M, L).
- **Proposed Treatment** Summary of the proposed upgrade or decommissioning. Treatment.

- Site Specific Cost to Treat Estimate based on equipment, labor, and materials. This does not consider logistical time (mob in/out, moving between sites, etc...) or supervision, which can collectively cost between 10-30% of the total project.
- **Cost Effectiveness** A metric often used for grant funded assessments based on dollars/cubic yard to perform proposed treatments.

Numerous sites, including a majority of the complex or large volume sites, were reviewed in the field by the PG for quality assurance purposes to ensure the assessment data was being collected accurately and no significant sediment sources were being ignored.

RESULTS

The road assessment was conducted on ~ 48 miles of road from December, 2009 to May, 2010 and identified 113 discrete sediment delivery sites where road upgrades or decommissioning is proposed (refer to Figures 1 and 2 for a spatial distribution of the sites, Appendix A for a summary spreadsheet of site data, Appendix B includes all original field forms; Appendix C depicts original mapped locations). A comprehensive discussion of road related erosion and sedimentation problems and standard treatments similar to those proposed herein can be found in the DFG Habitat Restoration Manual (Weaver and others, 2006).

Generally, treatments proposed in this assessment are based on standard design specifications for upgrading or decommissioning low volume forest roads as described in the HRM (Weaver and others, 2006), and consistent with goals presented in the IRMP (TCF, 2009), and predominately include upgrading undersized or poorly functioning watercourse crossings (e.g. installing new culverts sized for the 100-year flow, or installing rock armored fill crossings), excavating and stabilizing unstable fill material, and installing ditch relief culverts or reshaping the road with rolling dips or outsloping to enhance drainage and minimize sediment delivery to the stream system from hydrologically connected road segments.

A review of the assessment data reveals an estimated $18,952 \text{ yds}^3$ of sediment could potentially deliver to the stream network if upgrades are not implemented. An estimated 7,995 yds³ of sediment is in fill at watercourse crossings, 9,064 yds³ is estimated from road surface erosion on ~ 8.2 miles of hydrologically connected road segments, and 1,893 yds³ is estimated from active or potential landslide sites (e.g. perched or cracking fill).

Site data is summarized in Appendix A and mapped as either a watercourse crossing (CR), a road erosion site (RE), or a landslide site (LS). However, a majority of the watercourse crossings also include hydrologically connected road segments that drain to the crossing, and therefore increase the volume estimate and cost estimate to treat that site. It is not practical to identify a crossing as one discrete site, the road erosion leading to the crossing as another discrete site, and the adjacent oversteepened fill yet another site, as all the sediment delivery is essentially to the same point, and the equipment working at the site will implement treatments concurrently. Therefore, when summary

data is presented on watercourse crossings, quite a lot more than 7,995 yds³ of sediment will be displayed because road surface erosion and unstable fill slopes are also included in each crossing estimate. Potential sediment delivery associated with "crossings" is in fact 15,348 yds³.

In total 88 watercourse crossings were identified for upgrade ranging from minor repair (rock armoring, trash racks, clearing plugged culverts, etc...) to more significant improvements; 25 culvert crossings and 20 rock armored fills are proposed. Proposed road drainage improvements on ~ 8.2 miles of hydrologically connected road include 8 ditch relief culverts, 157 rolling dips, 1,400' of outsloping, 825' of surface rocking, and 98 cross drains on segments proposed for decommissioning. Additionally, 3,400 yds³ of potentially unstable fill is proposed to be excavated and stabilized.

In several locations it appeared from field observations that road segments could be decommissioned, or crossings excavated and roads converted to temporary status, pending a detailed review of the future harvest and yarding methods in the vicinity of the site by TCF forestry personnel. Treatments for decommissioning or converting a crossing to temporary status generally includes excavating and stabilizing fill from the crossing. Additionally, decommissioning typically involves installing frequent cross drains, and ripping the compacted road surface to enhance infiltration. Consistent with IRMP goals these roads are referred to as "at risk" roads and are summarized by planning watershed in Table 1 below.

Road Number	# of Mapped Sites	Length of Road Decomm. (ft.)
22100	2	2,000'
22005	1	950'
22300	1	100'
23408	1	500'
20030.1	3	1,500'
20030.2	1	800'
24100	4	1,700'
24110	1	100'
24112	1	150'
24040	1	250'
24600	3	2,400'
N/A ^a	9	1,700'
al	28	12,150' or 2.3 miles
	Number 22100 22005 22300 23408 20030.1 20030.2 24110 24112 24040 24600 N/A ^a	Number# of Mapped Sites22100222005122300123408120030.1320030.21241004241101241121240401246003N/A ^a 9

<u>Table 1</u> "At Risk" Roads Proposed for Decommissioning Sorted by Planning Watershed

^aLegacy road system in the headwaters of Laguna Creek

Many of the road segments presented in Table 1 have good access, would be straightforward and relatively cost effective to decommission, and therefore should be strongly considered for the proposed treatments presented in this assessment subject to review by TCF forestry personnel. Conversely, the legacy road system along the valley bottom in the headwaters of Laguna Creek is quite well vegetated and stable in some locations, or the road bed runs in the active channel in other locations. It is questionable as to whether decommissioning work would be beneficial, despite this the sites were included in the assessment for completeness.

Table 2 presents a summary of the estimated potential sediment delivery volume and cost of proposed treatment by site type and treatment immediacy for all project roads in the assessment area.

	Sorted by Site Type and Treatment Immediacy						
Sita Tupa	Treatment	# of	Potential Sed. Del.	Site Specific Cost			
Site Type	Immediacy	Sites	Volume (yds ³)	to Treat (\$)			
	Н	6	2,161	45,705			
Crossing ^a	Μ	35	6,608	164,541			
Crossing	L	47	6,579	134,909			
	Total CR	88	15,348	\$ 345,155			
	Н	1	403	6,060			
Road	Μ	4	593	10,232			
Erosion ^b	L	12	1,606	41,597			
	Total RE	17	2,602	\$ 57,889			
	Н	2	362	6,412			
Landslide ^c	М	4	449	11,599			
Lanushue	L	2	191	7,810			
	Total LS	8	1,002	\$ 25,821			
	Н	9	2,926	58,177			
Total	М	43	7,650	186,372			
All	L	61	8,376	184,316			
	Total All	113	18,952	\$ 428,865			

<u>Table 2</u>
Summary of Big River Road Sediment Data
Sorted by Site Type and Treatment Immediacy

^aCrossing sites commonly include road drainage upgrades on road segments that contribute road erosion to the crossing site, and may include landslide volume as well.

^bRoad erosion sites deliver run-off and sediment to a watercourse, but are not associated with a watercourse crossing; they may include landslide volume as well.

^cLandslide sites primarily deliver sediment to a watercourse through landsliding.

Construction work proposed in this assessment would likely be completed by licensed contractors with hydraulic excavators, loaders, dozers, graders, water trucks, dump trucks, rollers, compactors, and hand labor. It is assumed that rock would be quarried on the subject property at a cost of \$50/yd³ to excavate, sort, and deliver the material to the site. Culverts and erosion control would be provided by local suppliers of TCF choosing.

Each site was attributed with equipment, labor, and material costs, based on estimates found on Figure 6 to determine a cost estimate for each site. The hours and dollars presented on Figure 6 are only meant to be a starting point for estimating purposes; these were often modified based on site-specific conditions. Table 3 presents a summary of the estimated potential sediment delivery volume and cost of proposed treatment by planning watershed and site type.

Sorted by Planning Watershed and Site Type						
PWS	Site Type	# of	Potential Sed. Del.	Site Specific Cost		
1 105	Site Type	Sites	Volume (yds ³)	to Treat (\$)		
	CR^{a}	57	11,255	251,298		
Two Log	RE^{b}	13	2,082	44,334		
Creek	LS^{c}	6	811	18,011		
	Total TL	76	14,148	\$ 313,643		
	CR	27	3,398	76,411		
Laguna	RE	4	520	13,555		
Creek	LS	1	60	658		
	Total LC	32	3,978	\$ 90,624		
	CR	2	640	13,003		
Mouth of	RE	0	0	0		
Big River	LS	1	131	7,152		
	Total MB	3	771	\$ 20,155		
N.C. 1.11	CR	2	55	4,443		
Middle Albion	RE	0	0	0		
River	LS	0	0	0		
River	Total MA	2	55	\$ 4,443		
Total	CR	88	15,348	345,155		
Big River	RE	17	2,602	57,889		
Project	LS	8	1,002	25,821		
Roads	Total BR	113	18,952	\$ 428,865		

Table 3
Summary of Big River Road Sediment Data
Souted by Dianning Wetenshed and Site True

^aCrossing sites commonly include road drainage upgrades on road segments that contribute road erosion to the crossing site, and may include landslide volume as well.

^bRoad erosion sites deliver run-off and sediment to a watercourse, but are not associated with a watercourse crossing; they may include landslide volume as well.

^cLandslide sites primarily deliver sediment to a watercourse through landsliding; they may include secondary road erosion volume as well.

Note that costs are for the site-specific treatments only and do not include logistical costs (which may run ~20% of the total project) such as equipment move-in/move-out, moving equipment between sites, moving culverts around to the sites, final erosion control, and unforeseen circumstances. Additionally the presented cost estimate does not include layout, supervision, and reporting by a qualified professional (which may run ~10% of

the total project). Complete project costs are presented in the *SUMMARY* section of this report.

SUMMARY

An assessment of ~ 48 miles of road on TCF property in the Big River Watershed revealed 113 discrete locations where active or potential sediment delivery was noted. An estimated 18,952 yds³ of potential sediment delivery was inventoried through field based measurements and calculations. Site-specific equipment, labor, and material costs are estimated to be \$428,865 to complete the proposed treatments. Table 4 presents a complete project cost estimate including itemized costs to complete the treatments sorted by treatment immediacy, logistical and project management costs, and an estimate of total project cost effectiveness.

	Softed by Treatment Inmediacy					
Treatment Immediacy	Total Cost					
Н	Н \$31,927 \$8,000 \$18,250					
М	\$ 92,372	\$ 25,500	\$ 68,500	\$ 186,372		
L	\$ 85,716	\$ 10,100	\$ 88,500	\$ 184,316		
+ Logistics - equ be	\$ 122,942					
+ Project Manag	\$ 61,470					
	\$ 613,277					
	18,952 yds ³					
	$32 / yd^{3}$					

Table 4Complete Project Cost EstimateSorted by Treatment Immediacy

REFERENCES

Aerial Photographs

- 2004, Flight CO-OP, Frames 16-46 to 48; 17-157 to 159; 18-151 to 154; 19-261; 20-212, color, 1:12,000
- 1987, Flight HMS-87, Frames M16-42 to 44; M17-42 to 45, M18-46 to 49; M19-49 to 53; M20-54 and 55; M21-49 and 50, black-and-white, 1:12,000
- 1965, Flight AV 209.25, Frames 06-33 to 35; 07-34; 08-30 to 32; 09-27 to 29; 10-29 and 30, black-and-white, 1:20,000

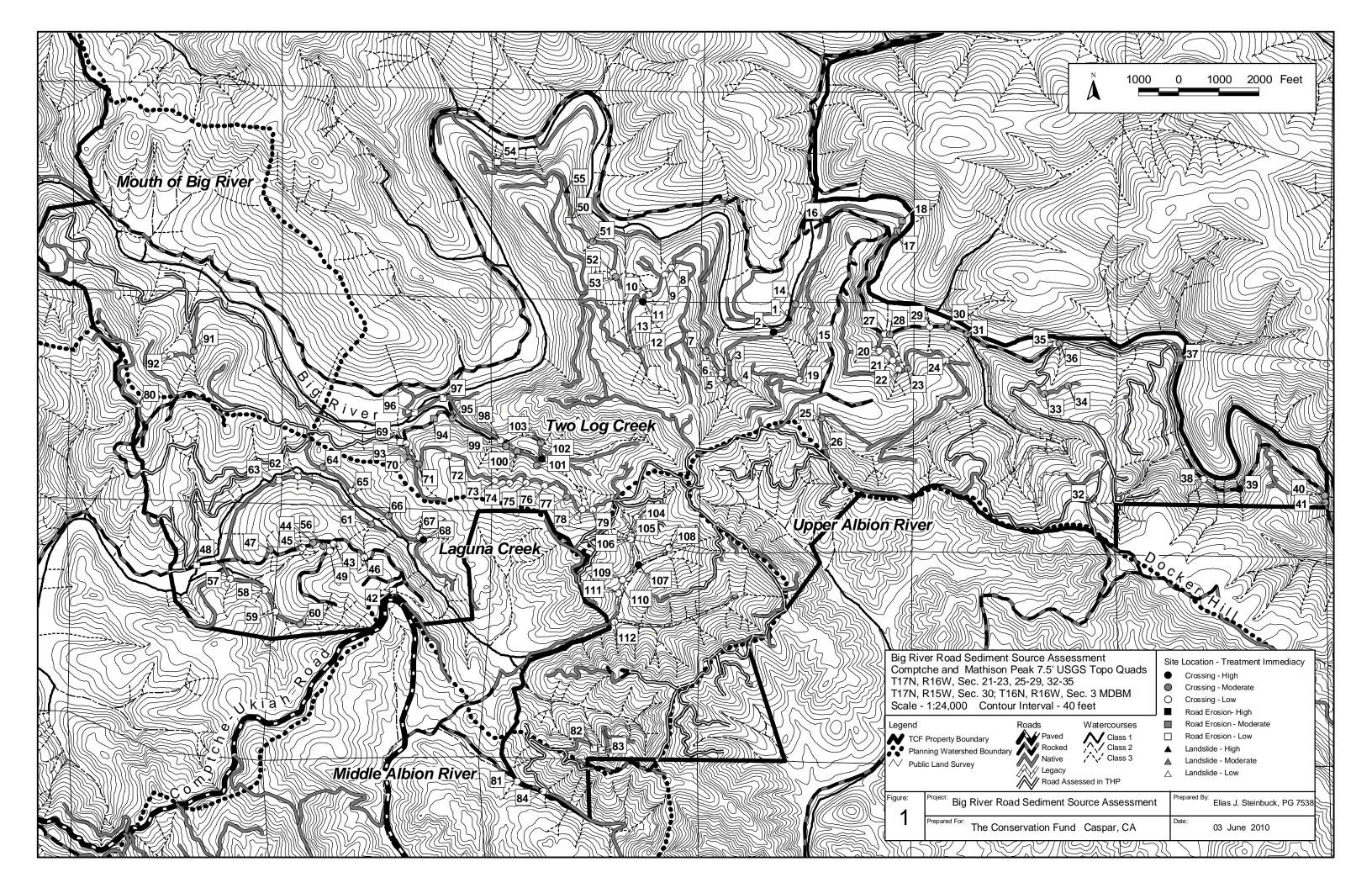
Maps and Literature

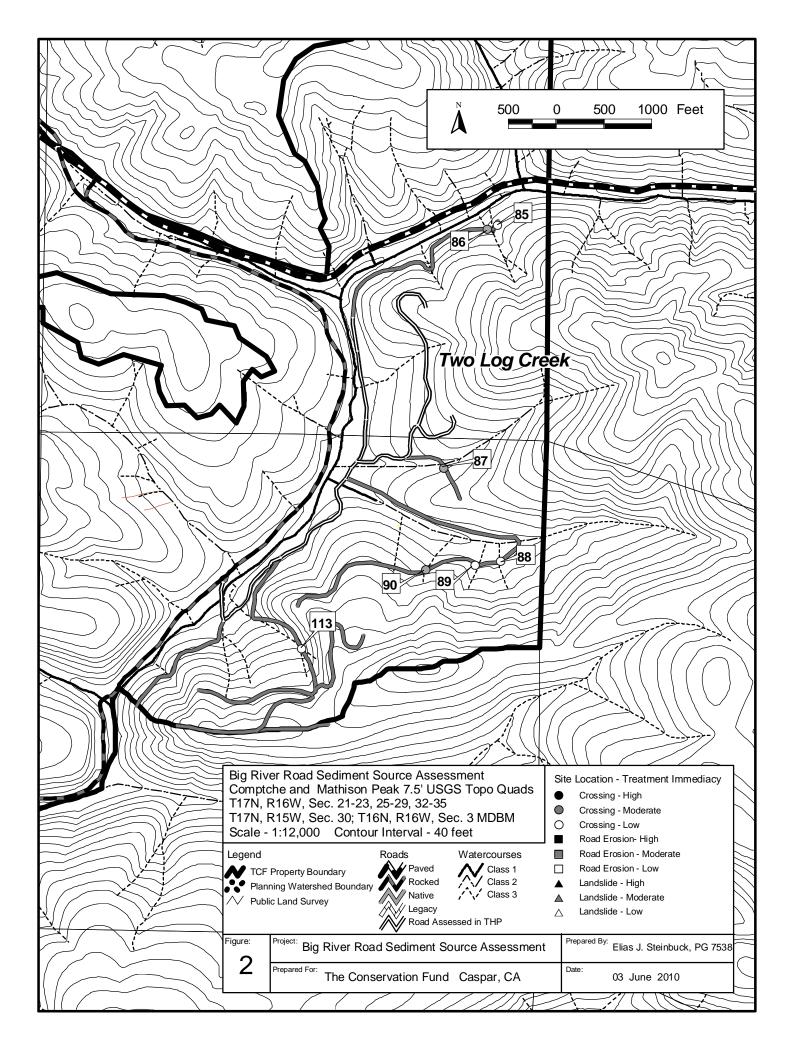
- Atwater, T., 1970. Implications of Plate Tectonics for the Cenozoic Tectonic Evolution of Western North America. Geological Society of America Bulletin, v.81, n.12, p.3513-3536.
- Blake, M.C. Jr., and Jones, D.L., 1981. The Franciscan Assemblage and Related Rocks in Northern California: A Reinterpretation, in, W.G. Ernst ed., 1981. The Geotectonic Development of California. Englewood Cliffs, NJ, Prentice-Hall, 706 p.
- Braun, D.R., Curless, J.M., Fresnel, K.W., and McGuire, D.J., 2005. Geologic and Geomorphic Features Related to Landsliding (Plate 1), & Relative Landslide Potential (Plate 2), Big River Watershed, Mendocino County, California. Department of Conservation, California Geological Survey, CD 05-02, scale 1:24,000.
- Cafferata, P, Spittler, T, Wopat, M., Bundros, G., and Flanagan, S., 2004. Designing Watercourse Crossings for Passage of 100-year Flood Flows, Wood, and Sediment. California Forestry Report No. 1, California Department of Forestry and Fire Protection, 34 p.
- Goodridge, J., 1997. California's Rainfall Records:1862-1997. CD ROM. CD produced by USDA Forest Service, Pacific Southwest Research Station, Arcata, California.
- Kilbourne, R.T., 1983a. Geology and Geomorphic Features Related to Landsliding, Comptche 7.5' Quadrangle, Mendocino County, California. Department of Conservation, California Geological Survey, OFR-83-21, scale 1:24,000.
- Kilbourne, R.T., 1983b. Geology and Geomorphic Features Related to Landsliding, Mathison Peak 7.5' Quadrangle, Mendocino County, California. Department of Conservation, California Geological Survey, OFR-83-20, scale 1:24,000.
- Pacific Watershed Associates, 1994. Handbook for Forest and Ranch Roads, A Guide For Planning, Designing, Constructing, Reconstructing, Maintaining and Closing Wildland Roads. Mendocino County Resource Conservation District, 198 p.
- Reeves, G.H., Benda, L.E., Burnett, K.M., Bisson, P.A., Sedell, J.R., 1995. A Disturbance-Based Ecosystem Approach to Maintaining and Restoring Freshwater Habitats of Evolutionary Significant Units of Anadromous Salmonids in the Pacific Northwest. American Fisheries Society Symposium, 17:334-349.
- Rittiman, C.A., and Thorson, T., 2001. Soil Survey of Mendocino County, California, Western Part. U.S. Department of Agriculture, Natural Resources Conservation Service, Posted website at http://www.ca.nrcs.usda.gov/mlra02/wmendo/eureka_qd.html.
- Swanson, F.J., Benda, L.E., Duncan, S.H., Grant, G.E., Megahan, W.F., Reid, L.M., and Ziemer, R.R., 1987. Mass Failures and Other Processes of Sediment Production in the Pacific NW Forest Landscapes. In: Streamside Management: Forestry and Fishery Interactions, E.O. Salo and T.W. Cundy, eds., Institute of Forest Resources, University of Washington, p. 9-38.
- The Conservation Fund (TCF), 2009. Big River and Salmon Creek Forests Integrated Resource Management Plan. Caspar, CA
- Weaver, W.E., Hagans, D.K., Weppner, E., 2006. *in* Flosie,G., et al., eds., California Salmonid Stream Habitat Restoration Manual, 3rd ed., Part X, Upslope Erosion Inventory and Sediment Control Guidance. California Department of Fish and Game, 207 p.

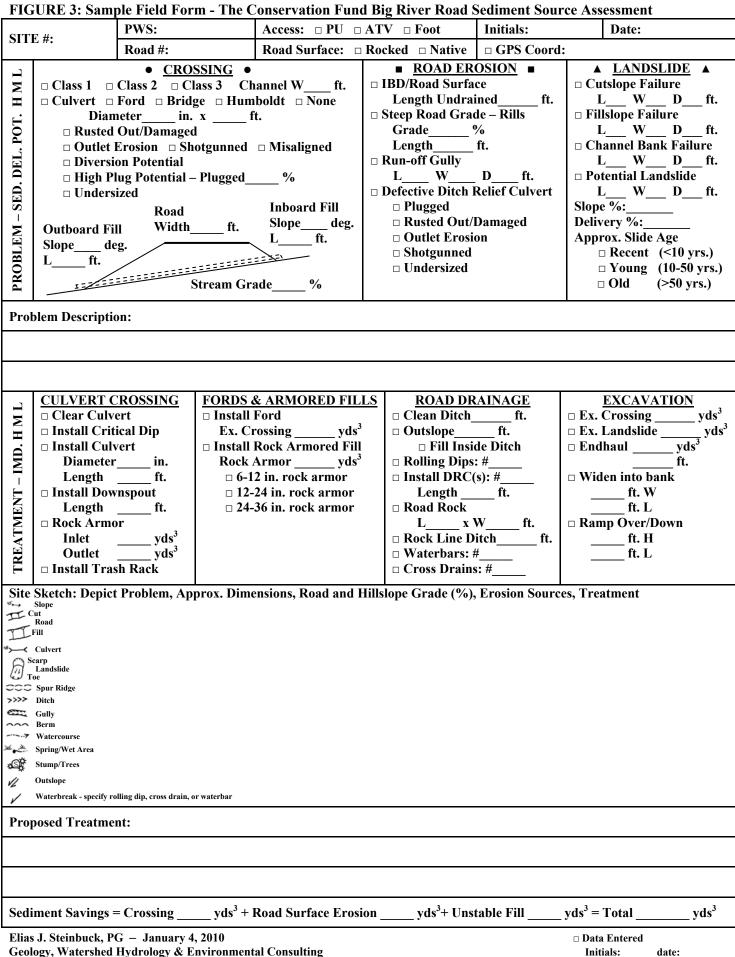
AUTHORITY

This assessment has been conducted in an objective manner and in accord with generally accepted professional practices for this type of work. Subsurface geotechnical exploration was beyond the scope of this report, therefore the conclusions are limited in that regard. Additionally, identification of erosion features can be obscured by dense vegetation and/or prolonged weathering, therefore older features may exist that were not observed on the aerial photographs or identified during the field reconnaissance.

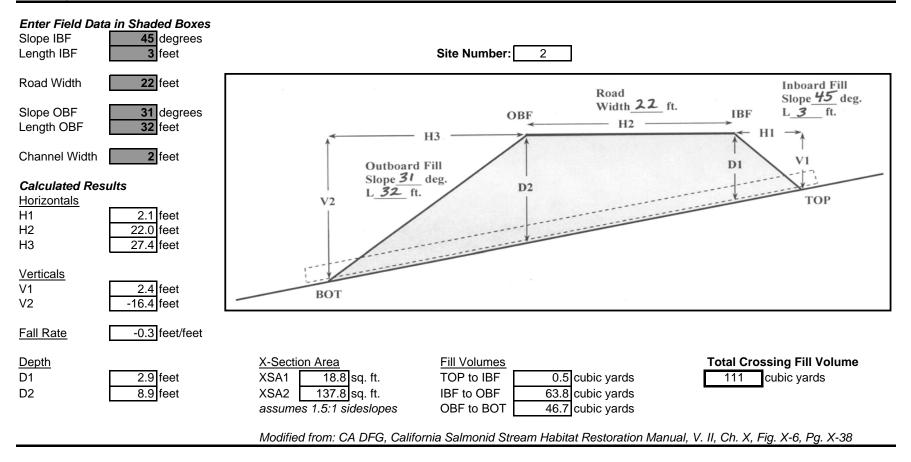

The proposed treatments are based on generally accepted specifications for managing low volume forest and ranch roads in the region; however this does not imply the project roads will not be subjected to rainfall, ground failure, or seismic shaking so intense that culverts and/or road segments will be severely damaged or destroyed regardless of implementation of the proposed treatments.


It is the responsibility of the Project Leader, or his designee, to ensure that the information contained in this assessment is brought to the attention of the contractor in enough detail that the treatments get properly implemented. In the event that site conditions change significantly in the assessment area between the time of this assessment and the time the treatments are implemented, a field visit and supplemental report shall be prepared to document such changes and revise the recommendations.


Please give me a call at 707-357-0520 if you have any questions.


Elin Heinterk

Elias Steinbuck Professional Geologist #7538



Initials:

FIGURE 4: Watercourse Crossing Fill Volume Calculator TCF - Big River Road Sediment Source Assessment

Elias J Steinbuck, PG EJS_Road Erosion Calculator_011110.xls

<i>Enter Field Data in</i> Road Length	Shaded Boxes	Site Number:	2
Road Width	18 feet	Erosio	n Rates
Erosion Rate	0.03 feet/year	Rocked Road	0.02 feet/year
Ave. Cut Height	10 feet	Native Road	0.03 feet/year
Ave. Cut Bare Soil	25 %	Bare Cutbank	0.03 feet/year
Calculated Results	5		
Road Surface			
Area	21600 sq. feet		
Erosion Rate	0.03 feet/year		
Time	10 years		
Erosion Volume	240.0 cubic yards		
		To	tal Road Surface Erosion Volume
<u>Cutbank</u>			273 cubic yards
Area	3000 sq. feet		
Erosion Rate	0.03 feet/year		
Time	10 years		
Erosion Volume	33.3 cubic yards		

Modified from: CA DFG, California Salmonid Stream Habitat Restoration Manual, V. II, Ch. X, Pg. X-34

I

FIGURE 6: Cost Estimates by Treatment Type The Conservation Fund - Big River Road Sediment Source Assessment

Elias J. Steinbuck, PG

EJS_TCF Big River Cost Tables 050410.xls

Notes: Time to complete treatments estimated from production rates on similar projects, rates may vary depending on contractor and site conditions Equiptment and Laborers are estimated in hours, rates are based on similar recent TCF project rates

Rip-Rap and Road Base estimated at \$50/cubic yard to open TCF pits and truck material to the sites, culverts estimated by quote from B&B Industrial

CULVERTS							
Small Sized Crossings and DRC's [<50 cubic yards] Seasonal Native Road Permanent Rocked Road							
Excavator	4	\$	520	<u>remanent R</u>		520	
Dozer	2	\$	190	2	•	190	
Water Truck	2	ֆ \$	190 156	4	-	312	
Grader/Skip	1	գ Տ	87	2	-	174	
-	0	ֆ \$	07	0	•	-	
Dump Truck Roller	0	э \$	-	2	•	- 174	
Laborer	4	э \$	- 148	4		174	
Culvert	4 24x40	э \$	1,000	4	э \$	140	
Rip-Rap	24x40 5	ֆ \$	250	5		250	
Road Base	0	գ Տ	-	20		1,000	
Total	0	\$	2,351	20	, φ \$	3,768	
	d Crossi) cubic yards]	Ψ	3,700	
	nal Nativ	-	-	Permanent R	ocked	Road	
Excavator	10	\$	1,300	<u>1(</u>		1,300	
Dozer	6	\$	570	6		570	
Water Truck	6	\$	468	8		624	
Grader/Skip	2	\$	174	4		348	
Dump Truck	0	\$	-	0	•	-	
Roller	2	\$	174	4	•	348	
Laborer	8	\$	296	8	-	296	
Culvert	36x40	\$	1,500	0	\$	1,500	
Rip-Rap	10	\$	500	1(500	
Road Base	0	\$	-	30		1,500	
Total	-	\$	4,982	-	\$	6,986	
Large Sized	Crossing			- cubic yards]	,		
-	nal Nativ			Permanent R	ocked l	Road	
Excavator	16	\$	2,080	16		2,080	
Dozer	12	\$	1,140	12	2 \$	1,140	
Water Truck	8	\$	624	8	\$	624	
Grader/Skip	4	\$	348	8	\$	696	
Dump Truck	0	\$	-	0		-	
Roller	6	\$	522	8		696	
Laborer	16	\$	592	16	5 \$	592	
Culvert	48x60	\$	2,100		\$	2,100	
Rip-Rap	20	\$	1,000	20) \$	1,000	
Road Base	0	\$	-	50) \$	2,500	
Total		\$	8,406		\$	11,428	
ROCH	(ARMC	DRE	D FILL	CROSSINGS			
			. .	F 400 1 .			
Small Rock A Excavator	Armored 4		Crossing 520	g [<100 cubic yaı	asj		
Dozer	4	\$ \$	520 190				
Water Truck	2	э \$	190 156				
Grader/Skip	2	э \$	87				
Dump Truck	0	ֆ \$	-				
Roller	2	գ Տ	- 174				
Laborer	0	ֆ \$	-				
	0	Ψ					
Rip-Rap	20	\$	1,000				
Road Base	30	\$	1,500				
Total	50	\$	3,627				
	Armored			a [>100 cubic ya	rds]		
Excavator	6	\$	780		•		
Dozer	4	\$	380				
Water Truck	4	\$	312				
Grader/Skip	2	\$	174				
Dump Truck	0	\$	-				
Roller	4	\$	348				
Laborer	0	\$	-				
		<i>.</i>					
Rip-Rap	40	\$	2,000				
Road Base	40	\$	2,000				
Total		\$	5,994				

ROAD SURFACE TREATMENTS							
Unstable Fill Excavation [per 100 cubic yards] <u>All Roads</u>							
Excavator	5	\$	650				
Dozer	1	\$	95				
Water Truck	1	\$	78				
Grader/Skip	1	\$	87				
Dump Truck*	0	\$	- 07	*add \$400 if endhaul			
Roller	0	\$	-	adu ş400 li enunaui			
Laborer	0	ф \$	-				
Laborer	0	Φ	-				
Rip-Rap	0	\$	-				
Road Base	0	\$	-				
Total		\$	910				
Rolling Dip Construction [per 1 dip]							
Season	al Nati	ve R	oad	Permanent Rocked	Ro	bad	
Excavator	0	\$	_	0	\$	-	
Dozer	2	\$	190		\$	190	
Water Truck	1	\$	78		\$	156	
Grader/Skip	1	\$	87		\$	87	
Dump Truck	0	\$	-		\$	-	
Roller	õ	\$	_		\$	87	
Laborer	0	φ \$	-		φ \$	07	
Laborer	0	Φ	-	0	φ	-	
Rip-Rap	0	\$	-	0	\$	-	
Road Base	0	\$	-	30	\$	1,500	
Total		\$	355		\$	2,020	
Outsloping [per 500' of road length]							
Season				Permanent Rocked	R	bad	
Excavator	0	\$	_	0	\$	-	
Dozer	4	\$	380		\$	570	
Water Truck	2	\$	156		\$	312	
Grader/Skip	4	\$	348		\$	348	
Dump Truck	0	\$	-		\$	-	
Roller	2	\$	174		\$	348	
Laborer	0	\$	-		\$	-	
	-	•			•		
Rip-Rap	0	\$	-		\$	-	
Road Base	0	\$	-	80	\$	4,000	
Total		\$	1,058		\$	5,578	
Rock-Lined Ditch [per 100' of ditch length]							
A	ll Road	ds					
Excavator	2	\$	260				
Dozer	0	\$	-				
Water Truck	0	\$	-				
Grader/Skip	1	\$	87				
Dump Truck	0	\$	-				
Roller	õ	\$	-				
Laborer	1	ֆ Տ	- 37				
	·	Ψ	51				
Rip-Rap Road Base	5 0	\$ \$	250				
Total	U	φ \$	634				

	Hourly Rates		
Excavator	\$ 130.00		
Dozer	\$ 95.00		
Water Truck	\$ 78.00		
Grader/Skip	\$ 87.00		
Dump Truck	\$ 78.00		
Roller	\$ 87.00		
Laborer	\$ 37.00		