

Improving Water Quality and Reducing Water Discharge in RAS using AquaPonic and Membrane Technology

Thomas M. Losordo, PhD Principal Scientist & Chief Engineer Pentair Aquatic Eco-Systems

Huy Tran Manager Aquaponics Sales Pentair Aquatic Eco-Systems

Phil Rolchigo, PhD Vice President Water Filtration Pentair

Dave Haider Managing Partner Urban Organics

Recirculating Aquaculture Systems (RAS)

Fine & Dissolved Removal Solids Removal Fish Culture Tank Air Stone Diffuser Packed Column Foam Fractionation Round, Octagonal Rectangular or Disinfection D-ended Aeration or Oxygenation Ultraviolet Light Ozone Contact Air Stone Diffuser Packed Column **Down-flow Contactor** Low Head Oxygenator U-tube Intensive Fish Culture Tanks Solids Removal Components **Biological Filtration** Waste Solids Removal • Biofiltration (Nitrification) Sedimentation Fluidized Bed Filters Carbon Dioxide Removal Swirl Separators Mixed Bed Filters Screen Filters UV Filters **Bead Filters Trickling Filters Double Drain Rotating Bio-Contactors** Oxygenation Components Denitrification Loop Typical Discharge 10 – 15% of System Volume per Day

Carbon Dioxide

The Basics of RAS Technology has been developing for over 40 years

Recirculating Aquaculture Systems Future Challenges

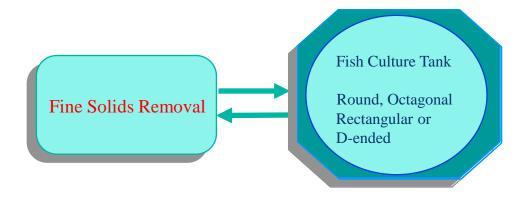
1) Fine Solids Removal Fine solids accumulation increases both capital and operating costs in 3) Waste Solids Treatment of Waste Water from RAS Treatment **Removal of Salt** does not always get the attention it from Sludge deserves. Treatment and disposal of salty sludge is and will be a big problem in Marine Discharge or Use in

Fish Culture Tank Round, Octagonal Rectangular or **D**-ended **~**· Re-use Waste Solids Capture 2) Waste Water Treatment AquaPonics

Today we will discuss advances required in both of these areas

1)

2)


3)

RAS.

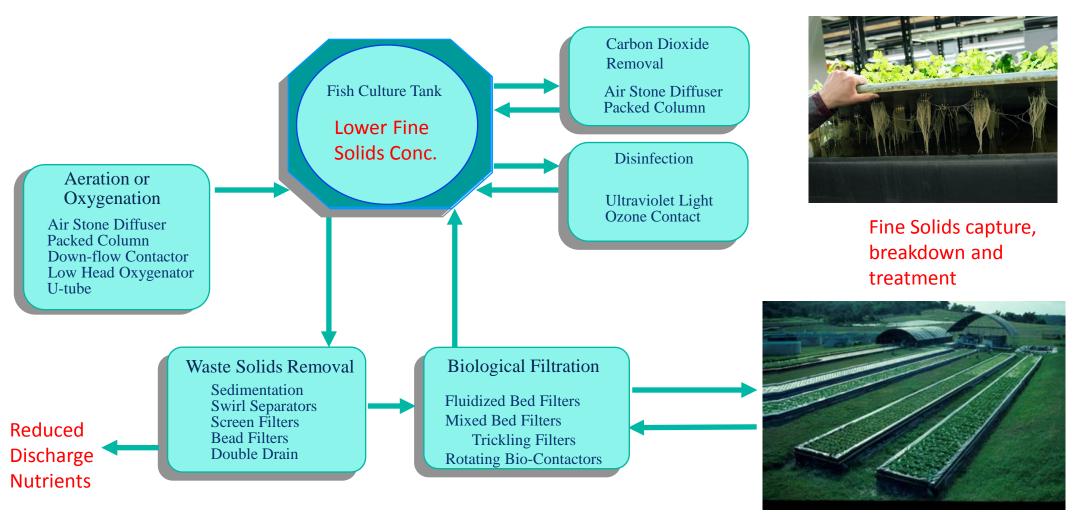
RAS.

Fine Solids Capture in RAS

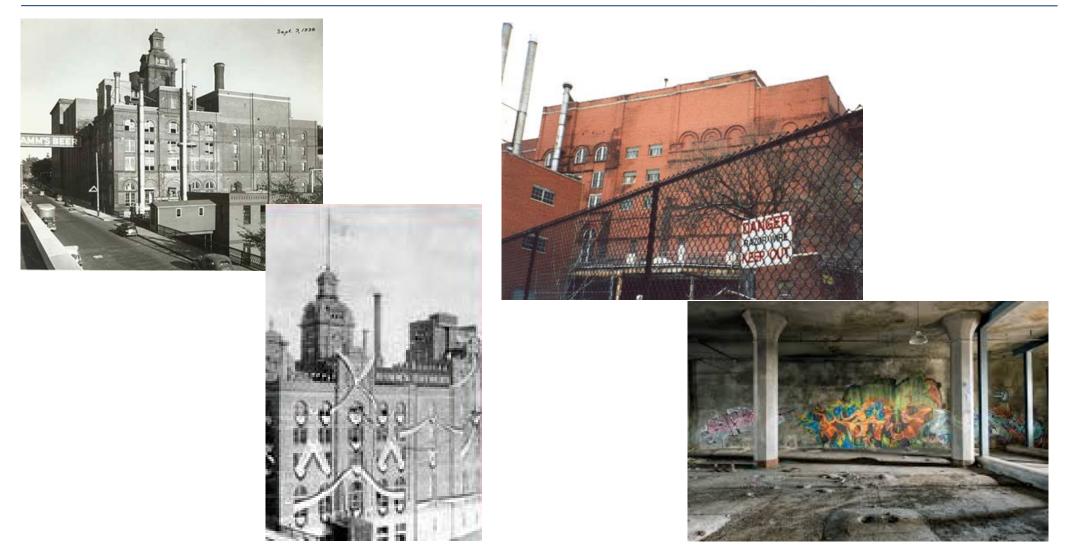
- Fine Organic Solids:
 - Produce more ammonia nitrogen requiring a larger biofilter.
 - Feed heterotrophic bacteria on a biofilter; reducing nitrification.
 - Additional nitrate production within the system requires more water exchange or a larger denitrification system.
 - Adds to the Biochemical Oxygen Demand requiring a larger oxygenation system.
 - Increases the use of oxygen; more \$\$
 - Irritate the gills of some cultured species

The buildup of fine solids is limiting production in RAS

Traditional AquaPonics Systems: UVI Design


- Fish Culture Tanks
- Solids Removal; Often Settling Technology
- Fine Solids Removal within Floating Plant Roots
- Nutrient Removal with the Plant Culture
- Aeration Provide at Fish Culture Tanks
- Typical 7 : 1 Plant Area to Fish Area Ratio

University of the Virgin Islands System Annual Output 5,000 kg of fish 1,400 Cases of Lettuce 5,000 kg of Basel 2,900 kg of Okra

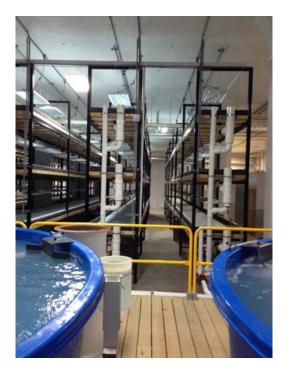

Traditional AquaPonics systems capture fine solids within root systems

Linking RAS with AquaPonics

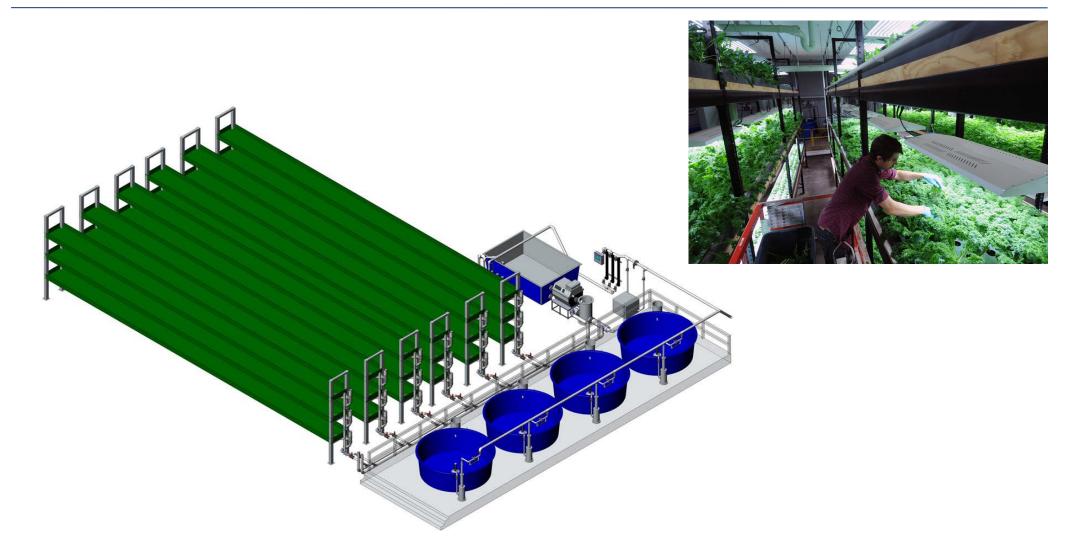
Fine Solids removal with nitrogen and phosphorus control

Urban Organics Links RAS with AquaPonics

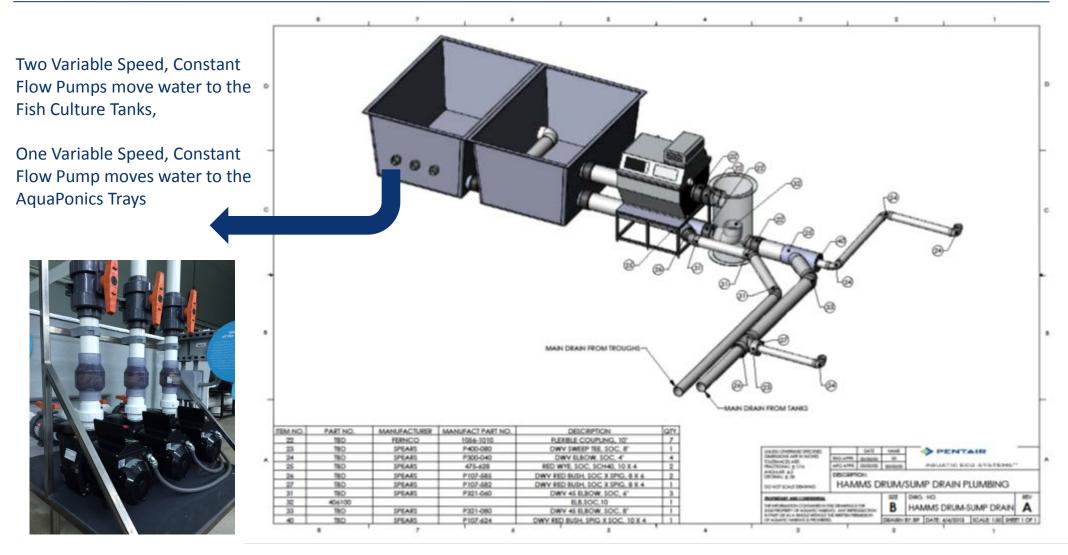
A Historic Business had fallen into Disrepair: The site for Urban Aquaculture


Goals for the Urban Organics Project

- Create a Fish and Plant Production Systems within the City
- Existing Building Provides Advantages of Lower Capital Costs & Subsidies for Redevelopment
- Create a System that Produces Fish and Plants at Rates to meet our Market Demand


Making Abandoned This

Into Productive This


Take unproductive urban structures and make it productive again

Urban Organics Linked RAS and AquaPonics

Urban Organics utilizes multi-level plant trays with artificial light

Linkage with AquaPonics at the Moving Bed Biofilter

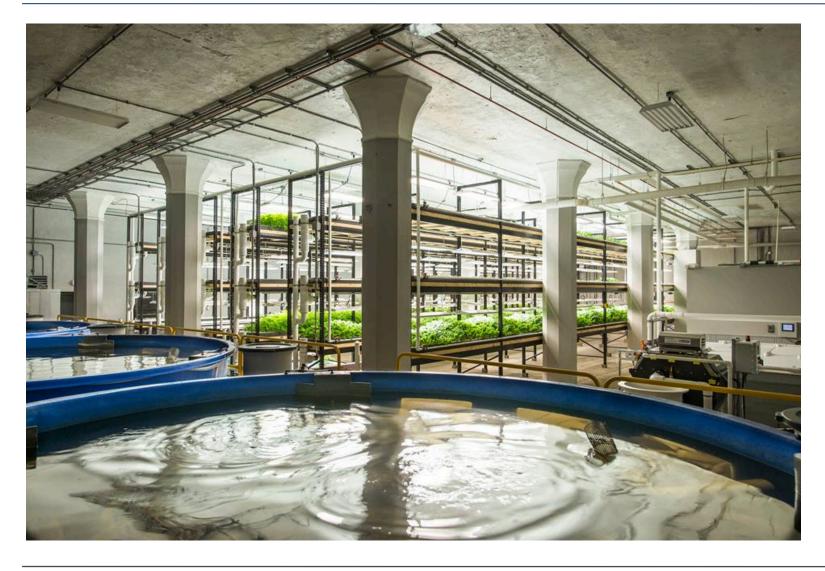
One Variable Speed pump moves water from the biofilter to AquaPonics Trays

PENTAIR

Urban Organics Linked RAS and AquaPonics

Urban Organics utilizes multi-level plant trays with artificial light

The "Farm" has Operated for 14 Months on One Floor



PENTAIR

- Feed Rates average
 36 45 kg / day
 - New Water used 1.5 m³ daily (62.5 m³ system) or 2.5%* exch daily from drumscreen & 1.62 m3 / day wasted 2.3% / day for total 5.8% daily
- Energy use is approximately 1030 kWh / day

Oxygen provided by an onsite oxygen generator; no ozone used, iron added

Farm Operation: 18 Trays Provide 225 m² Planted Area

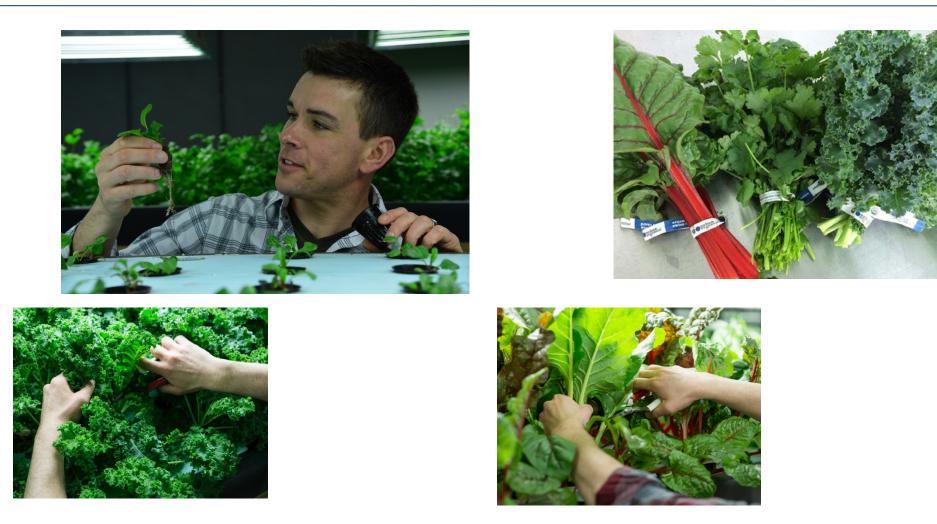
- 4000 fish stocked at 1 gram. One year later average weight 680 g
- 2885 kg of Feed used (FCR 1.1 : 1)*
- Fish harvest
 Sept 1 Oct
 25, 2014 = 376
 kg. Fish have
 been a nutrient
 source for
 plants

Fish Results within the First year; Sept – Oct Feed = 904 kg in addition

Farm Operation: Produce Harvests to Date

- Plant Harvests began 2-25-14
- Up to 8-20-14 the following quantities harvested
- 1373 kg Kale & Swiss Chard (\$13.23 / kg farm-gate)
- 60 kg of Cilantro and Parsley (\$13.23 / kg farm-gate)
 - 103 kg of Basil (\$17.64 / kg farm-gate)
 - 755 kg of Basil and Mint from Sept 1 – Oct 25, 2014

As typical in AquaPonics, organic produce dominate the income


Production System Effluent Water Quality

		6/30/2014	7/7/2014	7/14/2014	7/21/2014	7/28/2014	8/4/2014	8/25/2014	9/1/2014
Temperature	°C	26.9	26.7	27.1	28.1	26.9	27.6	29.5	28.4
Dissolved Oxygen	mg/L	7.84	8.27	8.46	6.35	6.79	6.80	6.85	5.63
рН		6.86	6.18	6.53	6.76	6.60	6.71	5.83	6.27
Ammonium-N	mg/L	0.45	0.45	0.51	0.60	0.53	0.52	0.23	1.17
Nitrite-N	mg/L	0.19	0.17	0.18	0.25	0.16	0.27	0.16	0.27
Nitrate-N	mg / L	50.71	54.53	51.62	50.05	56.99	60.43	69.3	66.6
Orthophosphate-P	mg/L	0.15	0.13	0.13	0.11	0.24	0.36	1.74	2.23
Alkalinity	mg CaCO₃ / L								
	0 .,	31	17	17	34	11.50	146	9	8
Solids: total suspended mg/L		7	7	11	1		6	32	18

Stable effluent water quality parameters with very low water exchange

PENTAIR

Turning Aquaculture Waste into a Valuable Commodity

The valuable produce grown on what RAS typically wastes is impressive Production limited by decision to scale up elsewhere....a significant scale up

Acknowledgements

Fred Haberman Robert Davis David Haider Kristen Koontz Haider Anthony Johannes

The Urban Organic Team

Urban Organics, 700 Minnehaha Ave E., Saint Paul, MN 55130

Acknowledgements

Ed Aneshansley Engineering Manager

Bill Peacock Senior Designer

Rick Jones Field Services Engineer

Pentair Aquatic Eco-Systems Beverly MA

www.aquaticeco.com

Pentair Aquatic Eco-Systems, 2395 Apopka Blvd, Apopka FL 32703