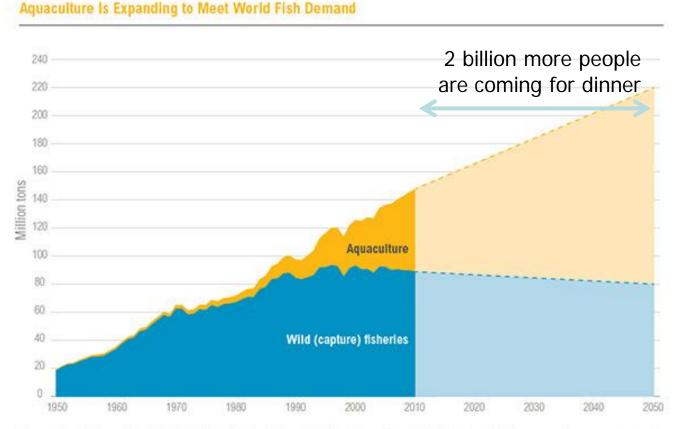


Basic Technical and Biological Elements of Recirculating Aquaculture Systems

Steven Summerfelt and Brian Vinci

Acknowledgements



Conservation Fund

- Why aquaculture and land-based RAS?
- RAS Basics
 - What fish need to survive & thrive
 - Water treatment processes
- Waste management and utilization
- Business and environmental risks
- Current Status of RAS
- Wrap-up

Why Aquaculture

Source: Historical data 1950-2010: FAO. 2014. "FishStatJ." Rome: FAO. Projections 2011-2050: Calculated at WRI, assumes 10 percent reduction in wild fish catch between 2010 and 2050, and linear growth of aquaculture production at an additional 2 million tons per year between 2010 and 2050.

See www.wri.org/publication/improving-aquaculture for full paper.

WORLD RESOURCES INSTITUTE

- > All aquaculture
 - Siting and competing users
 - Marine fish meal and oil supplies
 - Water pollution and impacts on watersheds
 - Disease interaction between wild & farmed
- Land based aquaculture
 - Freshwater supplies
 - Stringent wastewater discharge permits

Floating Systems

- Salmon net pens
 - 40,000 MT/yr in US
 - 2 Million MT/yr globally

 Production of other freshwater & marine species

Floating tanks/bag pens

Marine Harvest Norway 20,000 m³ floating tank at Molnes

Land-Based Systems

- Ponds
 - 200,000 MT/yr US catfish
 - Enormous global production of catfish, tilapia, shrimp, carp

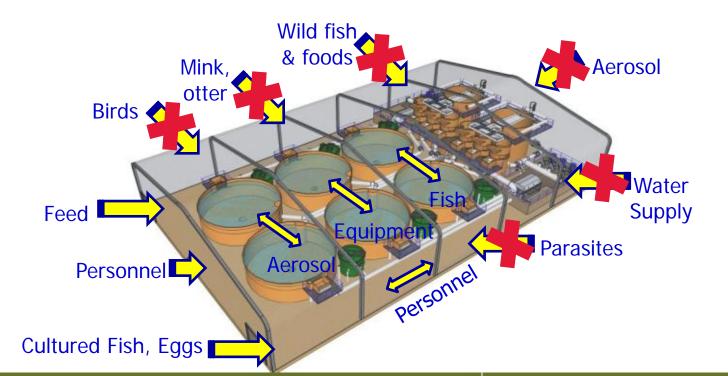
- Flow-through raceways
 - 20,000 MT/yr US trout

UUUNUI LIILUIT

- Recirculating Aquaculture Systems RAS
 - Represents a small but rapidly growing segment
 - Scale of land-based projects is increasing
 - 1,000 to 6,000 ton/yr under one roof
 - smolt/post-smolt salmon and food-size fish

RAS Advantages

- Closed-containment systems improve food security & reduced environmental impact:
 - <u>Small</u> footprint
 - Less than 1% of the land required by pond culture
 - Less than 1% of the **water** required by flow-through trout culture
 - Most Efficient; feed conversion is near 1:1
 - <u>Zero</u> escapees
 - no interaction/impacts on wild population
 - Location, location, location



RAS Advantages

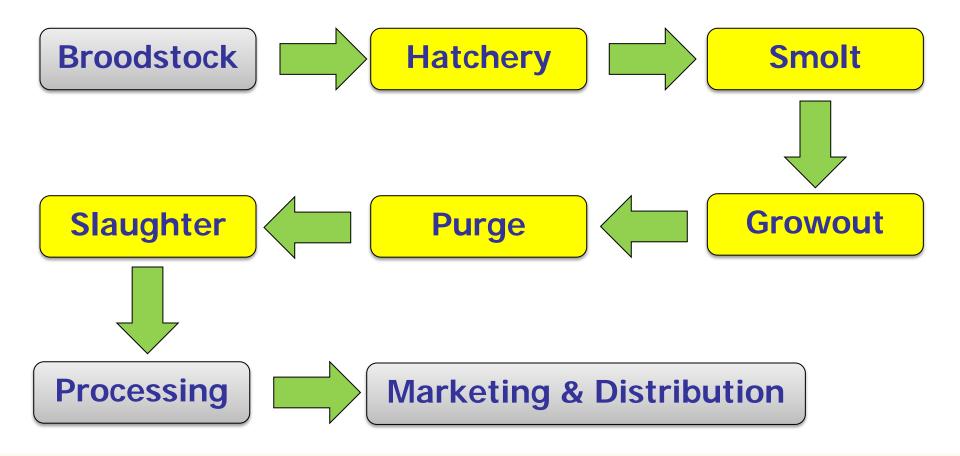
• Excludes obligate pathogens = healthier fish

Conservation Fund

- Reduce mortality. Improve health and performance
- Reduce or eliminate vaccine, antibiotic, & pesticide use
- Avoid losses from and costs of mitigating sea lice, viruses (ISA, PD), amoeba, bacteria, toxic algae, superchill

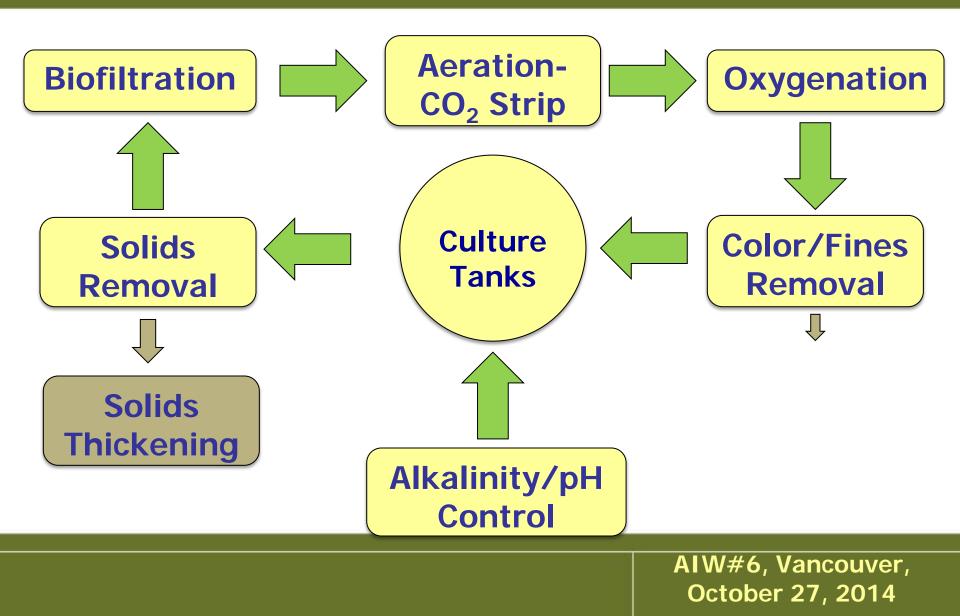
RAS Advantages

• Control and capture wastes and reclaim nutrients



- Consistent production
 - Similar product every week of the year
- Local & Fresh
- Highly traceable
- No pesticides and no (or reduced) antibiotics
- Environmentally friendly
- All are opportunities to market and brand

Recirculating System Concepts


Overview of System and Process Requirements

CONSERVATION FUND Water Recirculation System

- Land-based closed-containment systems are essentially giant water treatment facilities
- Recirculating water is the engine powering the system
 - flow carries OXYGEN to the culture unit
 - flow receives WASTES produced in the culture unit
 - flow carries WASTES out of the culture tank to the water treatment processes
 - flow creates the WATER ROTATION for fish performance

CONSERVATION FUND RAS Process Flow Diagram

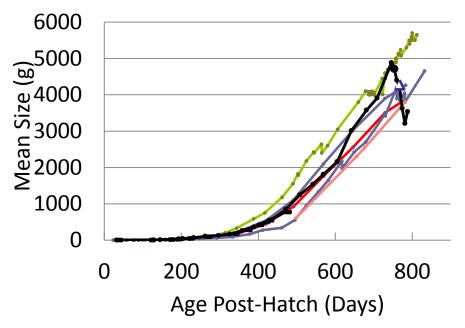
RAS - Example

0

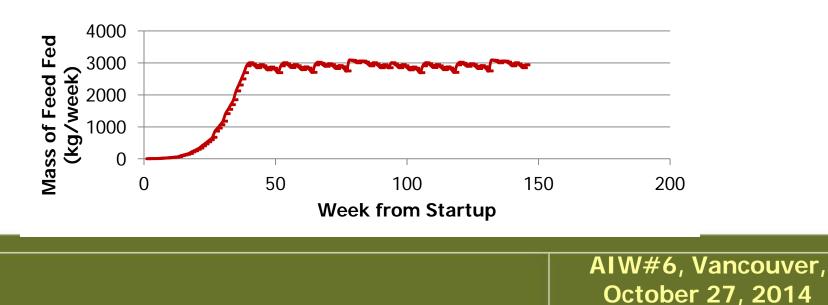
One module of eight at Bell Aquaculture: 120-160 MT/yr RAS

0

O


0

- Bioplan to define production system
- Water treatment and recirculation
- Fish harvest, purging, and humane slaughter
- Effluent treatment & biosolids dewatering


- Identify # fish, grouping, and timing of their movement through the systems
 - # stocked
 - Stocking size
 - Stocking frequency (e.g., monthly, quarterly, or annual)
 - Cold-banking
 - Biomass density for different sizes
 - # harvested
 - Harvest size
 - Weekly harvest
 - Cohort isolation at system or tank level
 - All in, all out versus comingled cohorts

Bioplan

- Identify what fish need to survive & thrive
 - Culture water characteristics
 - Oxygen, CO₂, ammonia
 - Temperature regime
 - Salinity
 - Feed rates
 - Growth rate
 - Fish density limits
 - Photoperiod
 - Swimming speed
 - Number & size of culture tanks

- Annual Production is directly proportional to:
 - Tons of feed fed annually
 - Feed conversion
 - Survival rate
 - Ability to maintain system near carrying capacity
 - Multiple egg, fingerling, smolt stocking each year with weekly harvests

RAS Capacity

- Carrying capacity of RAS
 - defined by the feed level that it supports
 - maintains water quality
 - healthy & rapid fish growth

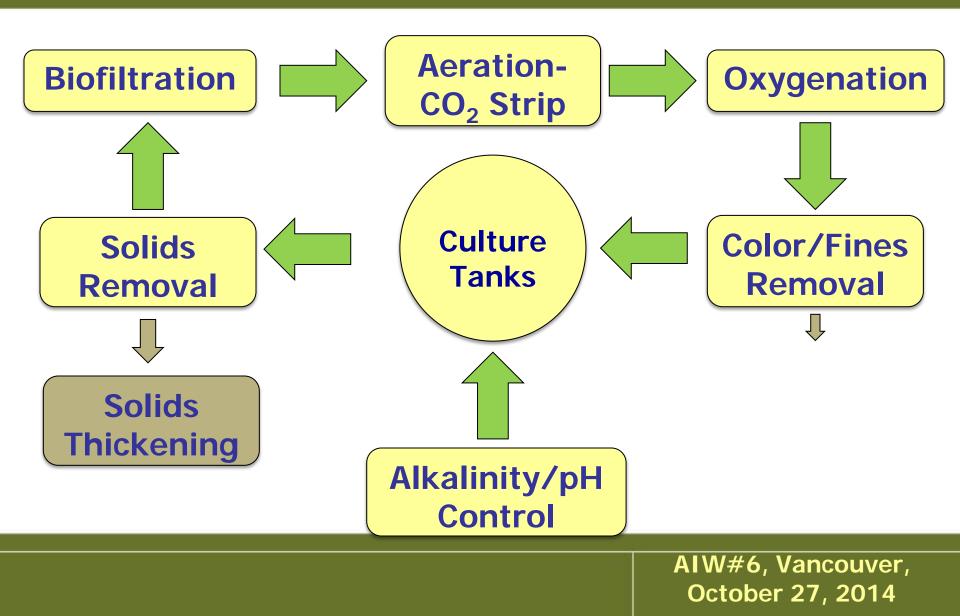
RAS Capacity

- Water quality within RAS depends on:
 - water flow,
 - waste production rate,
 - $-O_2$ consumption rate, and
 - efficiency of waste removal at each process
 - RAS designers must have experience with these parameters

RAS Capacity

 RAS must carry 90-100% of the waste treatment burden to maintain safe water quality for the fish.

Magnitude of RAS Water Reuse



<u>Open salmonid RAS</u>: 2-5% makeup flow 0.2-0.5 kg feed per m³ makeup water Clear water, TSS 3-5 mg/L

<u>Tight salmonid RAS</u>: 0.2-0.5% makeup flow 2-10 kg feed per m3 makeup Brown water, TSS of 10-20 mg/L Suggest ozonation!

- Water Supply for Most Open RAS
 - Closed-containment system can increase production on a limited water supply by 100+ fold
 Many commercial examples
- Water Supply for RAS with Denitrification & Solids Digestion
 - Very small water requirement
 - Water leaves with digested solids, evaporation
 - Few commercial examples

CONSERVATION FUND RAS Process Flow Diagram

Kuterra

The state

Culture Tanks

Spring Salmon

Bell

Langsand Laks

Solids Removal

Integrated dual-drain culture tanks, settlers, & drum filters

Biofiltration

Trickling Filter

Fluidized Sand Filter

Submerged Filter

> Moving Bed Filter

Trickling

Aeration – CO₂ Stripping

cascade aeration

110

Air-lift pump

Cascade aeration

Oxygenation

cascade aeration

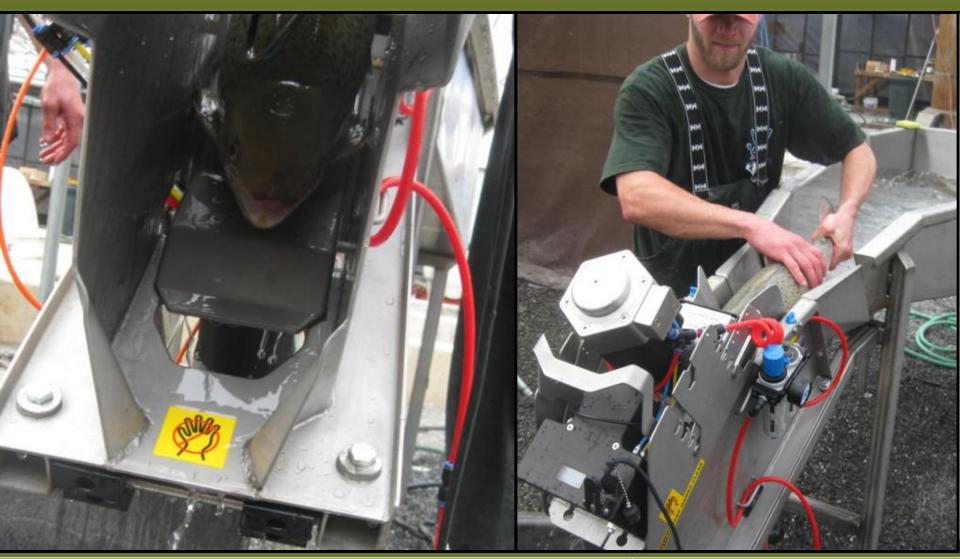
140

Cones

Deep Shaft Oxygen Diffusion

LHO

Fish Transfer & Grading



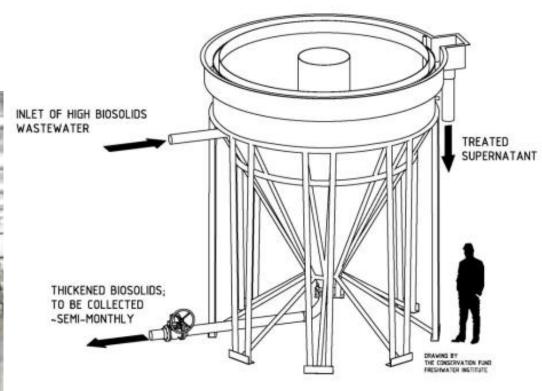
Depuration Systems

• System(s) to purge harvested fish of off-flavor

Humane Slaughter

Processing & Transport

Fish must be transported to processing



- Closed-containment
 - Limits waste discharge
- Place wastes into concentrated effluent flows
 - Increase waste treatment efficiency,
 - > 90-99% waste capture is possible;
 - Improved waste capture will reduce Total
 Maximum Daily Load discharged
 - Reduce the size and cost of effluent treatment

- Gravity thickening settling units
 - Lower fixed & variable costs
 - No coagulant / flocculants required to 5-10% solids
 - Low maintenance
 - Farmer friendly

Dewater & Dry Biosolids

PRESS

 Dry biosolids to avoid storage lagoons (odor), reduce transport volume, & prepare for composting

Reclaim Nutrients

- Nutrients can be reclaimed
 - Agronomic application of biosolids to crops
 - Compost
 - Aquaponics

Permitted Discharge

Aquaculture Discharge to Spring Pond at Freshwater Institute

Infiltration Basins at 'Namgis 1st Nation

Prevent Escapees

Screens exclude fish/eggs before discharge

Mitigating Business and Environmental Risks

<u>Risk #1</u> – loss of flow, power, oxygen

- Solutions:
 - Modularize several RAS instead of one large RAS
 - Redundant pumps on each RAS
 - Diffused oxygen system for emergency
 - Backup electric generator
 - Dial-out alarms to key personnel
 - Prepare and train the operations team

<u>Risk #2</u> – bacteria, virus, algae, or parasite creates high mortality

- Biosecurity Solutions:
 - Enclose RAS in a building
 - Use only pathogen-free groundwater as makeup
 - Use only certified pathogen free eggs
 - Include hygiene barriers
 - Limit access to facility
 - Pest control plan

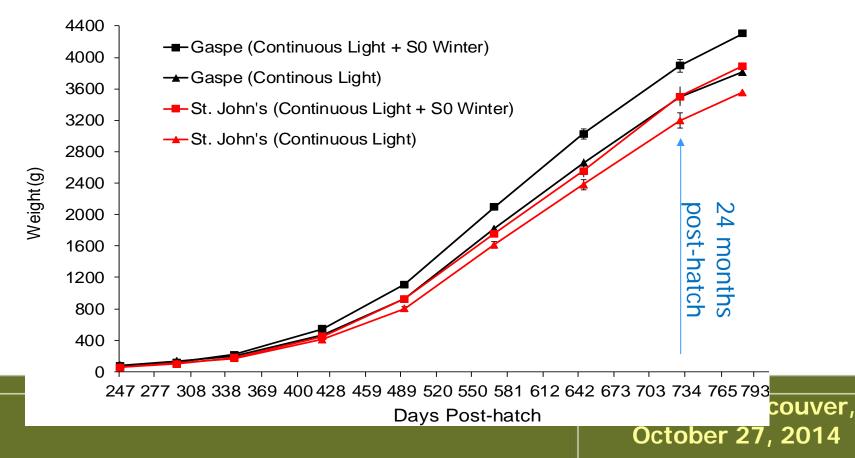
Mitigating Business and Environmental Risks

<u>Risk #3</u> – Inconsistent product quality due to grilse or off-flavor

- Solutions:
 - SOP's to purge fish
 - All female egg source

• Example from Freshwater Institute research

	Trial #2	Trial #3	Trial #4	Trial #5
	St John River	Cascade	Cascade	SalmoBreed
Grilse harvest size, kg	2.7 & 3.7	2.6	2.1	2.2
Prevalence, %	36.6	38.5	17.1	18.0
Post-harvest use	Hot smoked	Cold smoked	Fresh fillets & smoked	Fresh fillets


High maturation: Post-smolt initially comingled with previous cohort that were maturing

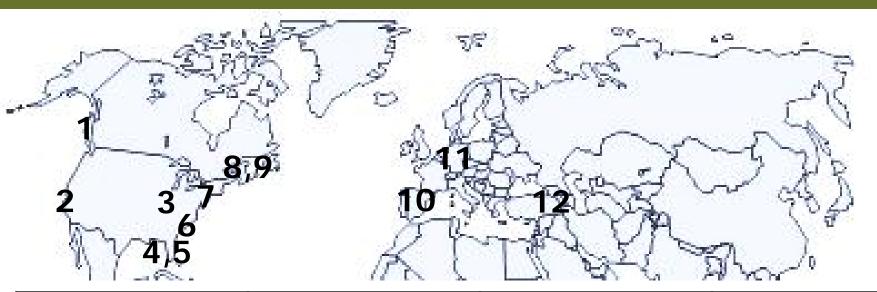
Conservation Fund

Early Maturing Males

- Example from research Trial #1
 - All female eggs obtained for Gaspe strain,
 - 1 to 2% sexually mature at harvest

Producing salmonids in RAS is biologically and technically viable

- Not just a concept, this works
- Real systems are in operation
- Industry is now evaluating economic viability


Land-Based Salmon Growout

1. KUTERRA	2. Golden Eagle	3. Spring	4. Bell Aqua
(Canada)	Aqua (Canada)	Salmon (USA)	(USA)
5. Freshwater	6. Sustainable	7. BDV (France)	8. Langsand
Institute (USA)	Blue (Canada)		Laks (Denmark)
9. Danish	10. Jurrasic	12. Xinjiang	11. Shandong
Salmon (Denmark)	Salmon (Poland)	Ehe (China)	Oriental OT _(China)

(Facilities harvesting fish or at least with eggs stocked)

CONSERVATION FUND Land-Based Growout: Other Species

1. Target Marine,	2. Stolt Sea Farm,	3. Bell Aqua ,	4. FL Organic
sturgeon (Canada)	sturgeon (Canada)	steelhead (USA)	Aqua, shrimp (USA)
5. American	6. Blue Ridge,	7. Australis,	8. Sustainable
Maricult, shrimp (USA)	tilapia (USA)	barramundi (USA)	Blue, char (Canada)
9. Canaqua – Scotia Halibut (Canada)	10. Stolt Sea Farm, turbot (Spain)	11. Danish Model Farms, trout (Denmark)	12. Aquatir, sturgeon (Moldova)

Developments in biologically sound technical systems have made closedcontainment RAS an emerging opportunity – success is dependent only on market and economic factors

THANK YOU