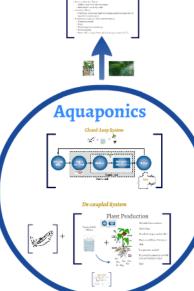


'Wasted' Waste


EXPLORING THE POTENTIAL OF UTILIZING KUTERRA'S EFFLUENT STREAM FOR A DECOUPLED AQUAPONICS SYSTEM

E. Latham¹, W. Vandersteen², A. Riseman²

1 Elsel Consulting, PO Box 1777, Port Hardy, BC, VoN 2Po. Contact: els.latham@gmail.com 2 Faculty of Land and Food Systems, University of British Columbia, 2357 Main Mall, Vancouver, BC V6T 1Z4.

System efficiencies: feed, water, disease management, harvest cycle

System efficiencies: feeu, water, aisease management, harvest cycle

EXPLORING THE POTENTIAL OF UTILIZING KUTERRA'S EFFLUENT STREAM FOR A DECOUPLED AQUAPONICS SYSTEM

E. Latham, W. Vandersteen, A. Riseman

- 1 Elsel Consulting, PO Box 1777, Port Hardy, BC, VoN 2Po. Contact: cls.latham@gmail.com
- 2 Faculty of Land and Food Systems, University of British Columbia, 2357 Main Mall, Vancouver, BC V6T 1Z4.

System

WASTE MANAGEMENT

System

System efficiencies: feed, water, disease management, harvest cycle

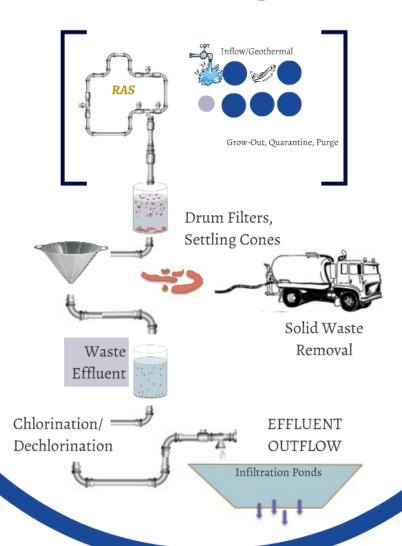
'Wasted' Waste

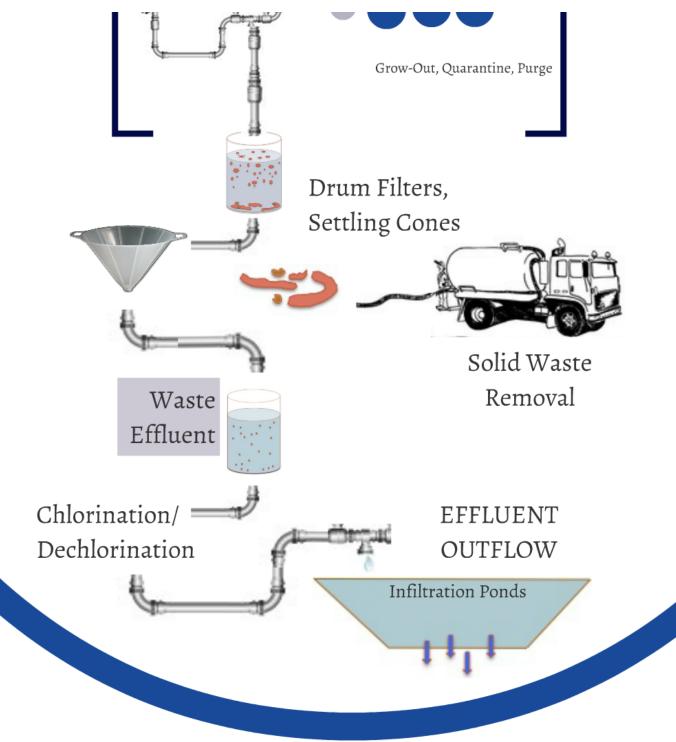
EXPLORING THE POTENTIAL OF UTILIZING
KUTERRA'S EFFLUENT STREAM
FOR A DECOUPLED AQUAPONICS SYSTEM

E. Latham, W. Vandersteen, A. Riseman

 Elsel Consulting, PO Box 1777, Port Hardy, BC, VoN 2Po. Contact: els.latham@gmail.com
 Faculty of Land and Food Systems, University of British Columbia, 2357 Main Mall, Vancouver, BC V6T 1Z4. man ^{*}

sh

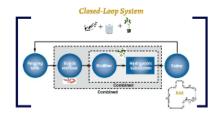

Fish Product



System efficiencies: feed, water, disease management, harvest cycle 'Wasted' Waste EXPLORING THE POTENTIAL OF UTILIZING KUTERRA'S EFFLUENT STREAM FOR A DECOUPLED AQUAPONICS SYSTEM E. Latham, W. Vandersteen, A. Riseman t Elied Gerendring, TO Box 1995, Perr Hardy, BC, VeN albo. German del arbamajögnad com a Facolty of Land and Food Systems, University of British Gelmebia, 2017 Maie Mell, Vancouver, BC Vell (Ze. **System Fish Product ় -**≣__ **WASTE MANAGEMENT Aquaponics**

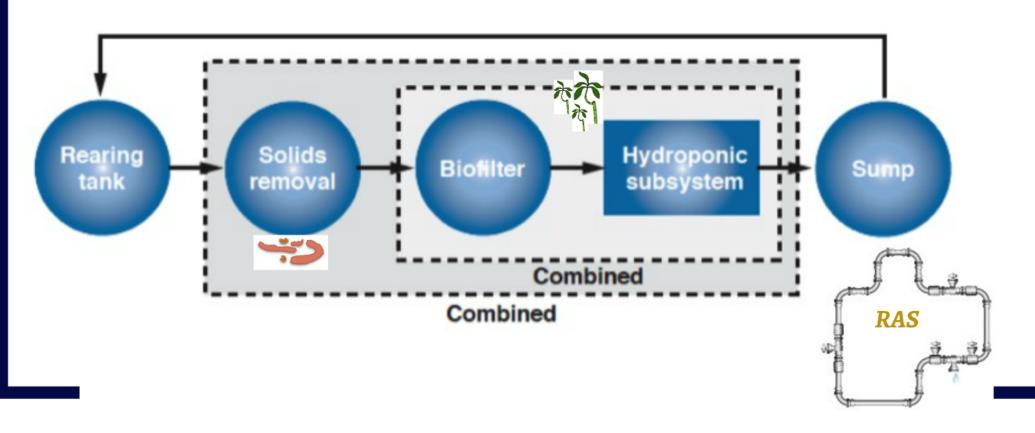
Closed-Loop System

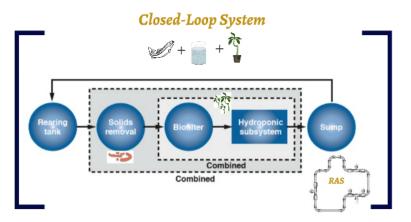
Waste Management

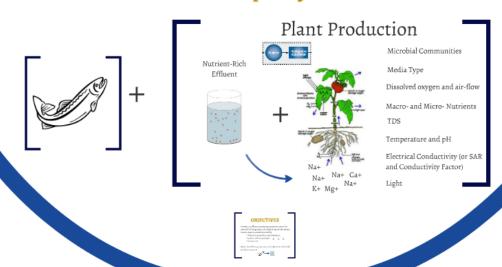


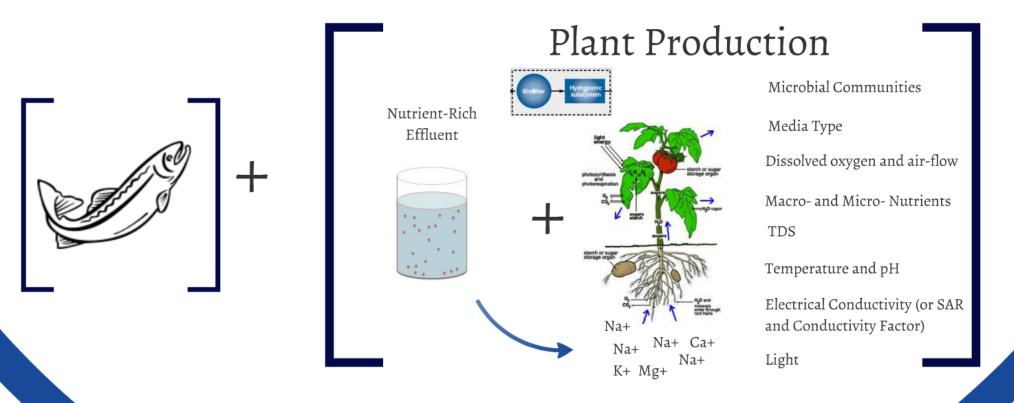
WASTE MANAGEMENT

Comportantics and Challenges - Other solvents of Tanal - Indiana of Grant - Indiana of Grant - Indiana of Grant - Indiana of Grant - Other or other - Indiana - Indi


Aquaponics

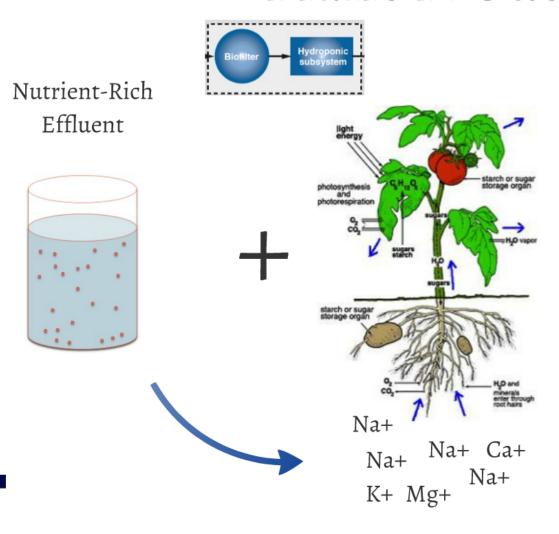

Closed-Loop System





De-counled Sustem

Aquaponics



De-coupled System

Plant Production

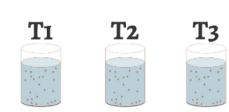
Microbial Communities

Media Type

Dissolved oxygen and air-flow

Macro- and Micro- Nutrients

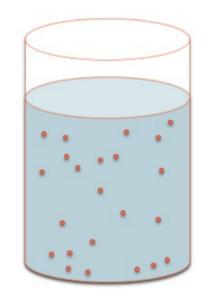
TDS

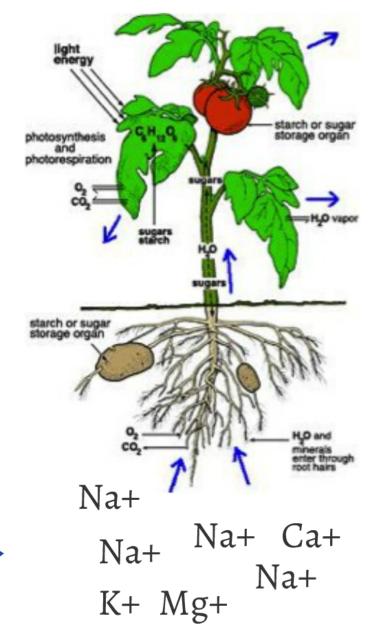

Temperature and pH

Electrical Conductivity (or SAR and Conductivity Factor)

Light

OBJECTIVES


- Develop an effluent monitoring protocol to assess the potential of integrating a de-coupled aquaponics system into the Kuterra production facility
 - Nutrient composition and abundance
 - Salinity, pH, temperature
 - Consistency


• Relate the effluent properties to the dynamics of the fish production system

Biofilter Hydroponic subsystem

Nutrient-Rich Effluent

Me

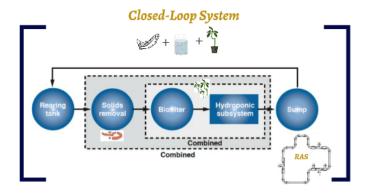
 M_1

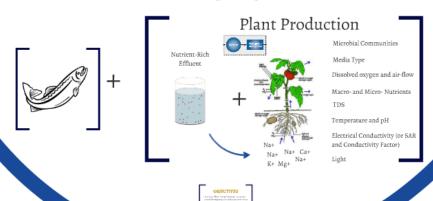
Dis

Ma

TI

Tei


Ele


and

Lig

Aquaponics

Kuterra:

Opportunities and Challenges

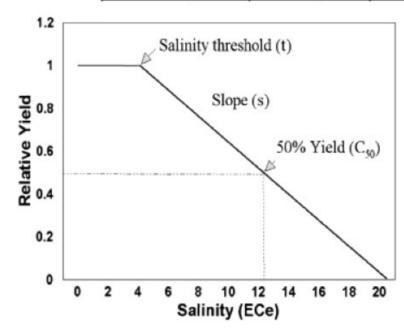
- Where to draw the effluent?
 - Outflow: may be too low in nitrogen
 - Before filters: too many solids
- Salinity of effluent
 - Freshwater source may need to be incorporated to mitigate loss of water from transpiration
- Anticipating a test phase of plant growing trials
 - · Greenhouse model
 - Media
 - Flow through or recirculating
 - System controls
 - Future: Off-venting of CO2 and heat into greenhouse facility

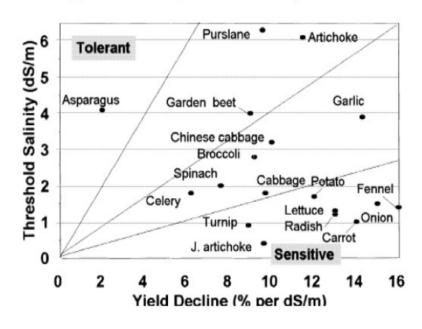
System efficiencies: feed, water, disease management, harvest cycle 'Wasted' Waste EXPLORING THE POTENTIAL OF UTILIZING KUTERRA'S EFFLUENT STREAM FOR A DECOUPLED AQUAPONICS SYSTEM E. Latham¹, W. Vandersteen¹, A. Riseman² 1. the Countries, 10 January, Oct. Lindy, 10, 50 of the Grand of Antandiguations 1. and of Land and Free Equipment, Converged Hearth Databases, 10, 50 for 18 feet, Freenester, 10 of Co. **System Fish Product** Advanta Ignatus classe edugat egui? Oblisse Idad Insi in audatat di dis-cessa general submidiscellamines des i Paratical Paratical **WASTE MANAGEMENT Aquaponics** De-coupled System

Conclusion

- Modeling the effluent properties is the first testing phase of Kuterra's goals in pursuing aquaponics as an ancillary revenue stream
- Kuterra has ideal system to contribute to the advancement of commercial aquaponics AND the production of sustainable salmon
- De-coupled aquaponics systems and use of brackish water are the vanguard of aquaponics innovation, research and development

'Wasted' Waste


EXPLORING THE POTENTIAL OF UTILIZING KUTERRA'S EFFLUENT STREAM FOR A DECOUPLED AQUAPONICS SYSTEM


E. Latham, W. Vandersteen, A. Riseman

1 Elsel Consulting, PO Box 1777, Port Hardy, BC, VoN 2Po. Contact: els.latham@gmail.com 2 Faculty of Land and Food Systems, University of British Columbia, 2357 Main Mall, Vancouver, BC V6T 1Z4.

Parameters	Kuterra Averaged from April-August 2014	Warncke (1983) greenhouse soil-media estimates		Schultz and Rakocy
		Acceptable	Optimal	(University of Virgin Islands aquaponics model)
Effluent volume	920 L/minute	-	-	
Temperature	13.9°C	-	-	21-24°C
pH	7.1	5.0-5.6	5.7-6.5	20.25
Total Nitrogen (ppm)	24.7 ppm	40-99 ppm	100-199 ppm	
Total Phosphorous (ppm)	1.2 ppm	3-5 ppm	6-10 ppm	
O2 (ppm)	7.4 ppm	-	-	5 mg/L
Total Dissolved Solids (TDS)	2,300 mg/L	-	-	200-2,000 mg/L
Salinity	2.0 ppt	1.5-2.4 dS/m	2.5-3.4 dS/m	0.3-3.0 dS/m

