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Presentation Objectives 

• Review experiences and challenges related to CO2 removal, 
focusing on the Kuterra Closed Containment facility as a case 
study 

• Provide a summary of analysis performed, conclusions drawn, 
and solutions being developed to improve carbon dioxide 
levels 

• Comment on potential design methodology for CO2 removal 
in large-scale, land based closed containment projects in the 
future. 
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Project Background: Kuterra Closed Containment 

• Located near Port McNeil on Vancouver 
Island, BC, Canada 

• Target production of 390 mT/year of 6 kg 
Atlantic Salmon 

• Smolt entry every 17 weeks 
• Three modules:  

 Quarantine (360 m3) 
 Growout (2500 m3)  
 Purge (360 m3) 

• RAS: 540 L/kg feed influent use 
• Began production in 2013 
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Process Overview 

Two process loops through a centralized, forced-air CO2 stripper 
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Design Criteria Overview (Grow-out Module) 

• Culture tank design criteria 
 Target CO2 concentration <12mg/L at tank outlet 
 Culture tank HRT = 45 min 
 Maximum density (per tank) = 50 kg/m3 with 1.5 safety factor 
 Oxygen consumption rate = 330 g O2 / kg feed 
 CO2 production rate = 1 kg CO2 / 1 kg O2  
 Feeding 24 hour/day 

• CO2 stripper design 
 HLR = 35 gpm / ft2 
 G:L ratio = 10:1 maximum 
 Orifice plate with crown nozzles 
 No gas transfer media 
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Changing Operating Conditions 
• Increased maximum density 

 Design = 50 kg/m3 (+1.5x safety factor) 
 New Target = 90 kg/m3 

• Feeding over a shortened day  
 Design = 24 hr feeding 
 Actual = 10 hr feeding  

• Alkalinity reduced 
 Design = 100 mg/L as CaCO3 minimum 
 Actual = 20-30 mg/L as CaCO3 

• CO2 concentration target relaxed  
 Design = 12mg/L  
 New Target = 18 mg/L Growout, 15 mg/L Quarantine 
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Challenges Encountered 

• CO2 concentrations consistently higher than 12 mg/L target 
despite lower than target design density and feed load 

 
• Issue is exacerbated by the desire to increase production by 

20% over the safety factor design value (80% over design 
value)  
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Data Measurement and Validation 
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Quarantine Module: Feed Rate and CO2 

Feed Fed (kg) CO2 (ppm)

50 kg/m3 
Design 
Target 
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Data Measurement and Validation 

y = 0.088x + 5.7363 
R² = 0.4111 

0

5

10

15

20

25

30

35

40

0 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

CO
2 

(p
pm

) 
 

Feed Load (kg/day) 

Quarantine Module: Feed Rate versus CO2 
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Root Cause Analysis: 
Identify Potential Causes 
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Potential Cause: Measurement Issue 

• Potential Contributing Factors 
 Measurement at bottom drain rather than side drain of tank 

 Between 2 and 4 mg/L difference between bottom and side drain (bottom drain 
estimated to represent up to 15 to 25% of tank volume) 

 Measurement method / analytical instrument error 
 Measurements taken using multiple methods (2 meters, pH/Alk, lab titration) 
 Poor agreement between methods (up to 4 mg/L different) 
 Using pH and Alkalinity difficult also due to consistency of alkalinity data 
 Low alkalinity results in significant pH shifts throughout the system 
 Measurement with meter at multiple locations difficult due to long response time of 

meters 
 Ultimately, a calibration method using dry ice used to validate meter readings 
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Potential Cause: Insufficient Flow Rate 

• Potential Contributing Factors 
 Difficult to quantify flow rates 

 No flow meters in the system due to size and cost 
 Insufficient straight runs of exposed pipe for strap on flow meters 

 Pump flow rates not meeting specification 
 Pump curves checked 
 Flow stoppage test performed to evaluate sump fill rate 

 Too much flow allocated to biofilters 
 Due to split flow process design, potential for biofilters to steal water from tanks 
 More biofilter flow required to compensate for settling in biofilter corners 
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Potential Cause: Reduced Stripping Efficiency 

• Potential contributing factors: 
 High ambient CO2 

 Typically less than 700 ppm, deemed to be minimal impact 
 Insufficient air flow (low G:L ratio) 

 Blower operating pressures tested, within design range 
 Insufficient fall height 

 Impact of raising and lowering stripper fall height evaluated, trade off with flow 
 Insufficient exposed water surface area 

 Structured or random packed media not possible due to installation challenges 
 Opti-grid media trialled to evaluate impact 

 Dilution of inlet CO2 concentration by biofiltration side loop 
 Offset by higher stripper turnover, overall 29%-60% efficient (data varied)  
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Potential Cause: Increased CO2 Production Rate 

• March 2014 data:  
 640 - 1000 g CO2 / kg feed 

• Aug-Sept 2014 data: 
 550 g O2 consumed/kg feed 
 0.87:1 kg CO2 produced per kg O2 consumed 
 therefore 480 g CO2/kg feed 

• High delta CO2 across culture tank 
 Requires very low CO2 leaving treatment system to address most heavily 

loaded culture tank 
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Root Cause Analysis: Conclusions 

• Accurate, real-time measurement of CO2 is challenging 
 

• Low flow rate to culture tanks due to high flow rate to biofilters 
 

• Central CO2 stripper efficiency requires media to maximize 
removal 
 

• Oxygen consumption by the fish is much higher than 
assumed in design (68% higher) 
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Options Evaluated 

• Flow Rate Increase (reduce delta CO2 at tank): Rejected 
 Limitations of existing piping 

• Centralized CO2 treatment: Rejected 
 90 kg/m3 loading (351kg/d feed peak tank) (1323kg/d feed system)  

 12.2mg/L across the peak tank requires 5.8mg/L CO2 inlet condition 
 Requires 61.5% CO2 removal efficiency at central treatment (does not include FSB 

CO2 production) 
 Can't shut down flow to make modifications 

• Decentralized CO2 treatment beside tank: Rejected 
 large flow  and footprint required  
 major tank modifications required (screened inlet / outlet)  
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Options Evaluation 

• In-tank aeration: Selected 
 Advantages: 

 Strips CO2 at source 
 More stripping on highest loaded tanks 
 Minimal infrastructure change 
 No additional footprint 

 Disadvantages: 
 Potential disruption to tank hydrodynamics 
 Potential for suspension and shearing of solid waste 
 Operational challenges 
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In-tank Aeration Pilot 

• Sized based on diffuser testing 
at PR Aqua 

• Occupies <2% of tank volume 
• Located in top 1/3 of tank 

depth 
• Low rise velocity, minimal 

solids entrainment 
• Floating design 
• Minimized hard edges and flat  

surfaces 
• 10 HP regenerative blower 
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In-tank Aeration Pilot: Preliminary Results 

• Effectively removes CO2 (up to 5 mg/L delta achieved) 
• CO2 removal efficiency less than small scale testing 

suggested (approx. 50%) 
 possible cause includes geometry, water impurities, salinity 

• No observable solids entrainment or increase in turbidity 
• No observable negative reaction from fish 
• No observable impact to tank hydrodynamics 
• Scalable performance = flexibility 
• Cumbersome for operators during fish handling 

In-tank aeration appears to be viable solution 
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Impacts to Future Design Methodology 

• Centralized treatment strategy: 
 System flow rates (for all processes) are driven by the needs of one limiting 

water quality criteria 
 At high density culture, and at low CO2 design concentrations, CO2 is likely to 

be the limiting factor setting tank HRT 
• Combination of centralized and decentralized treatment 

makes sense: 
 Allows for peaks to be dealt with at highest loaded tank 
 Allows “right-sizing” of flows for other treatment processes 
 Reduces flows that need to be conveyed to centralized treatment  
 Longer actual tank HRT with shorter effective HRT 
 Redundancy of process 
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Impacts to Future Design Methodology 

Combination of centralized and decentralized treatment 
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Lessons Learned 

• Design in the ability to measure / troubleshoot systems 
 

• Use much higher oxygen consumption / CO2 production rates 
in design for large fish swimming at velocity 
 

• Do not mistake production safety factor for design criteria 
safety factor. 
 

• Innovation can result in uncertainty 
 consider contingencies for modification or improvement of system post 

commissioning 
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Future Work Required 

• Improve understanding of the factors impacting oxygen 
consumption and CO2 production rates 
 Quantify impacts of swim speed, lighting, stress, and feed loads 

 
• Determine optimal design limits for CO2  

 Balance between production optimization and cost 
 

• Continue to develop distributed treatment solutions for carbon 
dioxide removal 
 Develop designs to mitigate impacts to tank operation 
 Beta testing proceeding at Kuterra facility 
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