

CO2 REMOVAL

RECENT CHALLENGES, EXPERIENCES, AND SOLUTIONS DEVELOPED FOR LAND BASED CLOSED CONTAINMENT AQUACULTURE SYSTEMS

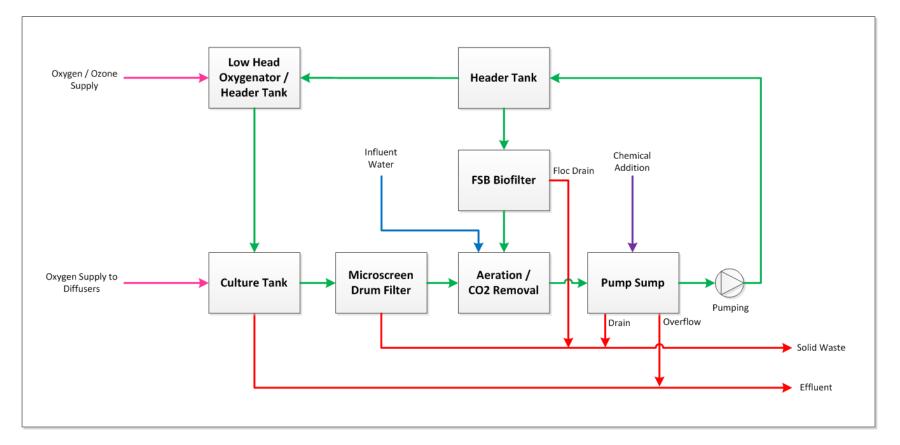
KC Hosler, P.Eng.

Rev #: B Date: 2014-10-28

Presentation Objectives

- Review experiences and challenges related to CO₂ removal, focusing on the Kuterra Closed Containment facility as a case study
- Provide a summary of analysis performed, conclusions drawn, and solutions being developed to improve carbon dioxide levels
- Comment on potential design methodology for CO2 removal in large-scale, land based closed containment projects in the future.

Project Background: Kuterra Closed Containment



- Located near Port McNeil on Vancouver Island, BC, Canada
- Target production of 390 mT/year of 6 kg
 Atlantic Salmon
- Smolt entry every 17 weeks
- Three modules:
 - Quarantine (360 m3)
 - Growout (2500 m3)
 - Purge (360 m3)
- RAS: 540 L/kg feed influent use
- Began production in 2013

Process Overview

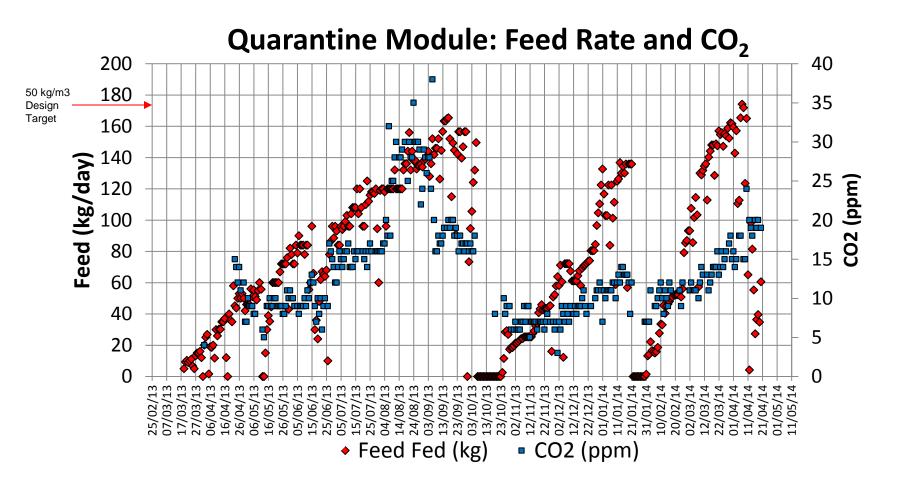
Two process loops through a centralized, forced-air CO2 stripper

Design Criteria Overview (Grow-out Module)

- Culture tank design criteria
 - Target CO₂ concentration <12mg/L at tank outlet
 - Culture tank HRT = 45 min
 - Maximum density (per tank) = 50 kg/m3 with 1.5 safety factor
 - Oxygen consumption rate = 330 g O2 / kg feed
 - CO2 production rate = 1 kg CO2 / 1 kg O2
 - Feeding 24 hour/day
- CO2 stripper design
 - HLR = 35 gpm / ft2
 - G:L ratio = 10:1 maximum
 - Orifice plate with crown nozzles
 - No gas transfer media

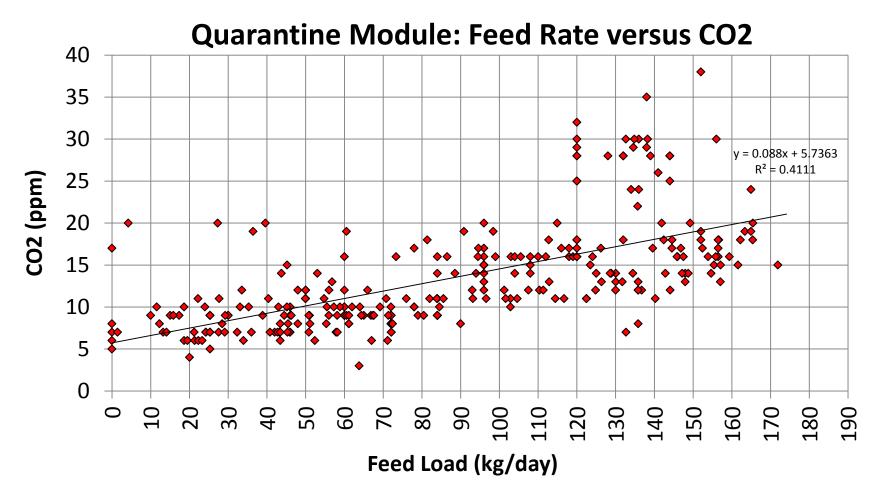
Changing Operating Conditions

- Increased maximum density
 - Design = 50 kg/m3 (+1.5x safety factor)
 - New Target = 90 kg/m³
- Feeding over a shortened day
 - Design = 24 hr feeding
 - Actual = 10 hr feeding
- Alkalinity reduced
 - Design = 100 mg/L as CaCO₃ minimum
 - Actual = 20-30 mg/L as $CaCO_3$
- CO₂ concentration target relaxed
 - Design = 12mg/L
 - New Target = 18 mg/L Growout, 15 mg/L Quarantine

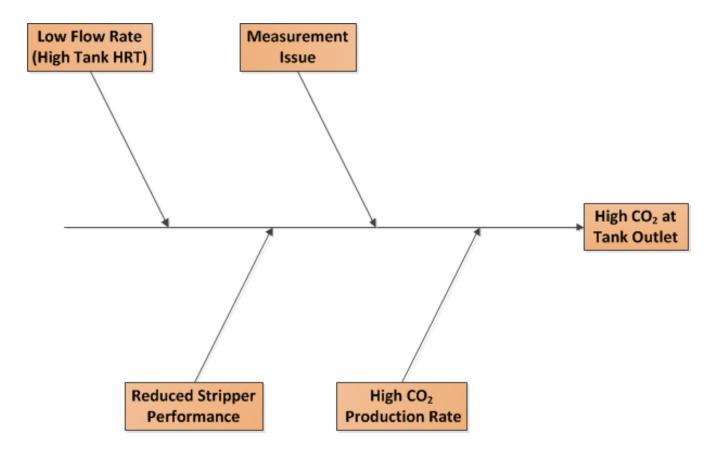


Challenges Encountered

- CO₂ concentrations consistently higher than 12 mg/L target despite lower than target design density and feed load
- Issue is exacerbated by the desire to increase production by 20% over the safety factor design value (80% over design value)



Data Measurement and Validation


Data Measurement and Validation

Copyright © 2014 PR Aqua Supplies Inc. This document is confidential and is the property of PR Aqua. Do not distribute without approval.

Root Cause Analysis: Identify Potential Causes

Potential Cause: Measurement Issue

- Potential Contributing Factors
 - Measurement at bottom drain rather than side drain of tank
 - Between 2 and 4 mg/L difference between bottom and side drain (bottom drain estimated to represent up to 15 to 25% of tank volume)
 - Measurement method / analytical instrument error
 - Measurements taken using multiple methods (2 meters, pH/Alk, lab titration)
 - Poor agreement between methods (up to 4 mg/L different)
 - Using pH and Alkalinity difficult also due to consistency of alkalinity data
 - Low alkalinity results in significant pH shifts throughout the system
 - Measurement with meter at multiple locations difficult due to long response time of meters
 - Ultimately, a calibration method using dry ice used to validate meter readings

Potential Cause: Insufficient Flow Rate

- Potential Contributing Factors
 - Difficult to quantify flow rates
 - No flow meters in the system due to size and cost
 - Insufficient straight runs of exposed pipe for strap on flow meters
 - Pump flow rates not meeting specification
 - Pump curves checked
 - Flow stoppage test performed to evaluate sump fill rate
 - Too much flow allocated to biofilters
 - Due to split flow process design, potential for biofilters to steal water from tanks
 - More biofilter flow required to compensate for settling in biofilter corners

Potential Cause: Reduced Stripping Efficiency

- Potential contributing factors:
 - High ambient CO₂
 - Typically less than 700 ppm, deemed to be minimal impact
 - Insufficient air flow (low G:L ratio)
 - Blower operating pressures tested, within design range
 - Insufficient fall height
 - Impact of raising and lowering stripper fall height evaluated, trade off with flow
 - Insufficient exposed water surface area
 - Structured or random packed media not possible due to installation challenges
 - Opti-grid media trialled to evaluate impact
 - Dilution of inlet CO2 concentration by biofiltration side loop
 - Offset by higher stripper turnover, overall 29%-60% efficient (data varied)

Potential Cause: Increased CO₂ Production Rate

- March 2014 data:
 - 640 1000 g CO₂ / kg feed
- Aug-Sept 2014 data:
 - 550 g O2 consumed/kg feed
 - 0.87:1 kg CO2 produced per kg O2 consumed
 - therefore 480 g CO2/kg feed
- High delta CO₂ across culture tank
 - Requires very low CO₂ leaving treatment system to address most heavily loaded culture tank

Root Cause Analysis: Conclusions

- Accurate, real-time measurement of CO₂ is challenging
- Low flow rate to culture tanks due to high flow rate to biofilters
- Central CO₂ stripper efficiency requires media to maximize removal
- Oxygen consumption by the fish is much higher than assumed in design (68% higher)

Options Evaluated

- Flow Rate Increase (reduce delta CO₂ at tank): Rejected
 - Limitations of existing piping
- Centralized CO₂ treatment: Rejected
 - 90 kg/m3 loading (351kg/d feed peak tank) (1323kg/d feed system)
 - 12.2mg/L across the peak tank requires 5.8mg/L CO₂ inlet condition
 - Requires 61.5% CO2 removal efficiency at central treatment (does not include FSB CO2 production)
 - Can't shut down flow to make modifications
- Decentralized CO₂ treatment beside tank: Rejected
 - large flow and footprint required
 - major tank modifications required (screened inlet / outlet)

Options Evaluation

- In-tank aeration: Selected
 - Advantages:
 - Strips CO₂ at source
 - More stripping on highest loaded tanks
 - Minimal infrastructure change
 - No additional footprint
 - Disadvantages:
 - Potential disruption to tank hydrodynamics
 - Potential for suspension and shearing of solid waste
 - Operational challenges

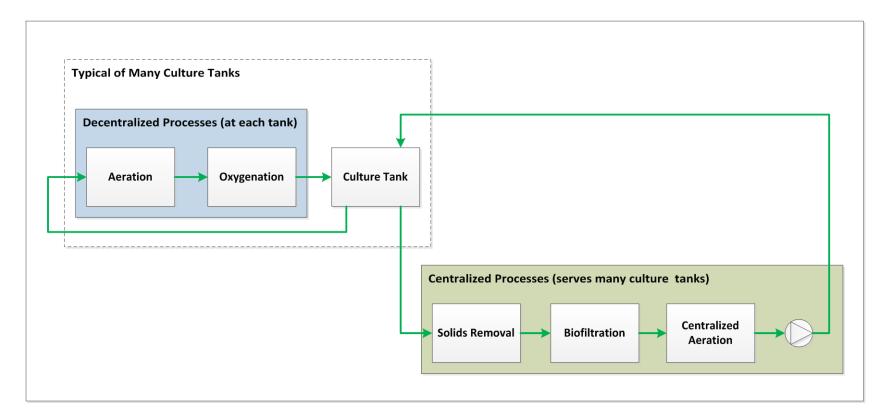
In-tank Aeration Pilot

- Sized based on diffuser testing at PR Aqua
- Occupies <2% of tank volume
- Located in top 1/3 of tank depth
- Low rise velocity, minimal solids entrainment
- Floating design
- Minimized hard edges and flat surfaces
- 10 HP regenerative blower

In-tank Aeration Pilot: Preliminary Results

- Effectively removes CO2 (up to 5 mg/L delta achieved)
- CO2 removal efficiency less than small scale testing suggested (approx. 50%)
 - possible cause includes geometry, water impurities, salinity
- No observable solids entrainment or increase in turbidity
- No observable negative reaction from fish
- No observable impact to tank hydrodynamics
- Scalable performance = flexibility
- Cumbersome for operators during fish handling

In-tank aeration appears to be viable solution



Impacts to Future Design Methodology

- Centralized treatment strategy:
 - System flow rates (for all processes) are driven by the needs of one limiting water quality criteria
 - At high density culture, and at low CO₂ design concentrations, CO₂ is likely to be the limiting factor setting tank HRT
- Combination of centralized and decentralized treatment makes sense:
 - Allows for peaks to be dealt with at highest loaded tank
 - Allows "right-sizing" of flows for other treatment processes
 - Reduces flows that need to be conveyed to centralized treatment
 - Longer actual tank HRT with shorter effective HRT
 - Redundancy of process

Impacts to Future Design Methodology

Combination of centralized and decentralized treatment

Lessons Learned

- Design in the ability to measure / troubleshoot systems
- Use much higher oxygen consumption / CO₂ production rates in design for large fish swimming at velocity
- Do not mistake production safety factor for design criteria safety factor.
- Innovation can result in uncertainty
 - consider contingencies for modification or improvement of system post commissioning

Future Work Required

- Improve understanding of the factors impacting oxygen consumption and CO₂ production rates
 - Quantify impacts of swim speed, lighting, stress, and feed loads
- Determine optimal design limits for CO₂
 - Balance between production optimization and cost
- Continue to develop distributed treatment solutions for carbon dioxide removal
 - Develop designs to mitigate impacts to tank operation
 - Beta testing proceeding at Kuterra facility