

CO₂ REMOVAL

UPDATE ON CHALLENGES, EXPERIENCES, AND SOLUTIONS DEVELOPED FOR LAND BASED CLOSED CONTAINMENT AQUACULTURE SYSTEMS

Aquaculture Innovation Workshop, Oct. 15, 2015 Shepardstown, W. Virginia

KC Hosler, P.Eng.

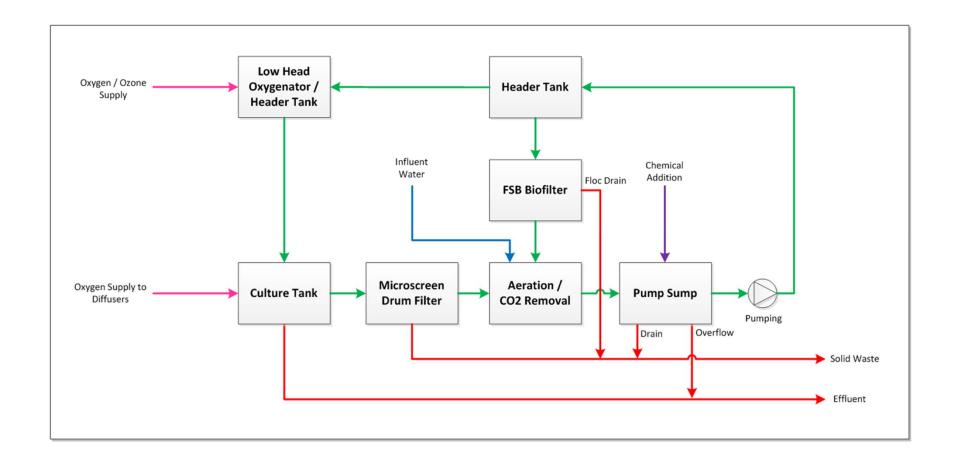
Rev #: E

Date: 2015-10-15

Presentation Objectives

- Review experiences and challenges related to CO₂ removal at the Kuterra Closed Containment facility
- Provide a summary of analysis performed, conclusions drawn, and solutions developed to improve carbon dioxide levels
- Comment on potential design methodology for CO2 removal in large-scale, land based closed containment projects in the future.

Project Background: Kuterra Closed Containment



- Located near Port McNeil on Vancouver Island, BC, Canada
- Target production of 390 mT/year of 6 kg Atlantic Salmon
- Smolt entry every 17 weeks
- Three modules:
 - Quarantine (360 m3)
 - Growout (2500 m3)
 - Purge (360 m3)
- RAS: 540 L/kg feed influent use
- Began production in 2013

First land based Altantic Salmon grow-out in North America

Process Overview

Two process loops through a centralized, forced-air CO2 stripper

Design Criteria Overview (Grow-out Module)

Culture tank design criteria

- Target CO₂ concentration <12mg/L at tank outlet</p>
- Culture tank HRT = 45 min
- Maximum density (per tank) = 50 kg/m3 with 1.5 safety factor
- Oxygen consumption rate = 330 g O2 / kg feed
- CO2 production rate = 1 kg CO2 / 1 kg O2
- Feeding 24 hour/day

• CO2 stripper design

- HLR = 35 gpm / ft2
- G:L ratio = 10:1 maximum
- Orifice plate with crown nozzles
- No gas transfer media

Changing Operating Conditions

• Increased maximum density

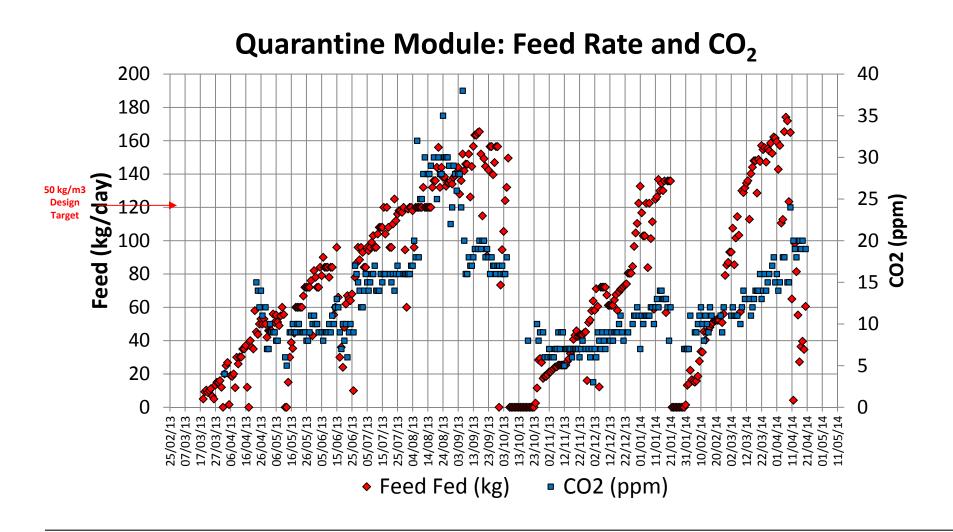
- Design = 50 kg/m3 (+1.5x safety factor)
- New Target = 90 kg/m^3

Feeding over a shortened day

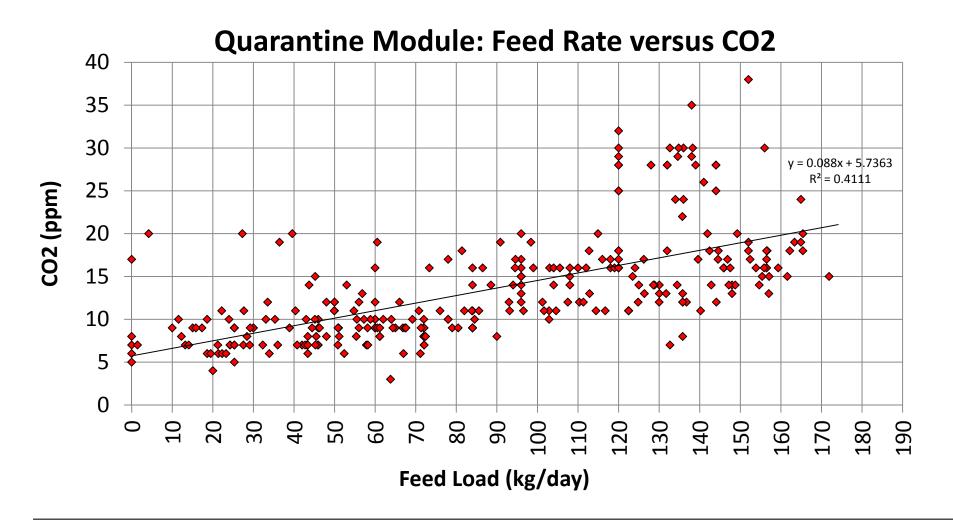
- Design = 24 hr feeding
- Actual = 10-24 hr feeding (variable)

Alkalinity reduced

- Design = 100 mg/L as CaCO₃ minimum
- Actual = 20-30 mg/L as CaCO₃


CO₂ concentration target relaxed

- Design = 12mg/L
- New Target = 18 mg/L Grow-out, 17 mg/L Quarantine


Challenges Encountered

- CO₂ concentrations consistently higher than 12 mg/L target despite lower than target design density and feed load
- Issue is exacerbated by the desire to increase production by 20% over the safety factor design value (80% over design value)

Data Measurement and Validation

Data Measurement and Validation

Wide variation in CO2 readings due to measurement uncertainty

Root Cause Analysis: Potential Causes

- Measurement Issues
- Insufficient flow rate
- Reduced Stripping Efficiency
- Increased CO₂ Production Rate

Potential Cause: Increased CO₂ Production Rate

March 2014 data:

 $-640 - 1000 \text{ g CO}_2/\text{kg feed}$

Aug-Sept 2014 data:

- -550 g O2 consumed/kg feed
- -0.87:1 kg CO2 produced per kg O2 consumed
- -therefore 480 g CO2/kg feed

• High delta CO₂ across culture tank

 Requires very low CO₂ leaving treatment system to address most heavily loaded culture tank

Root Cause Analysis: Conclusions

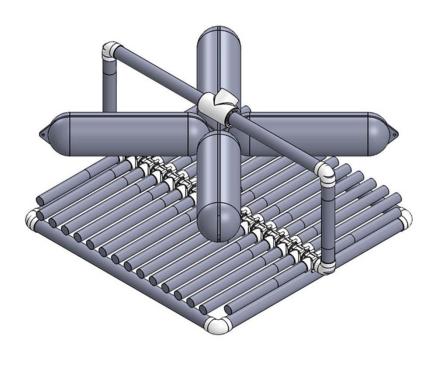
- Accurate, real-time measurement of CO₂ is challenging
- Low flow rate to culture tanks due to high flow rate to biofilters
- Central CO₂ stripper efficiency requires media to maximize removal
- Oxygen consumption by the fish is much higher than assumed in design (68% higher)

Options Evaluated

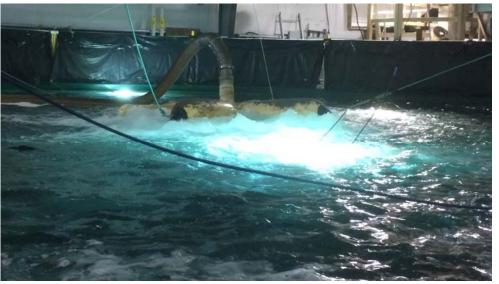
- Flow Rate Increase (reduce delta CO₂ at tank): Rejected
 - Limitations of existing piping
- Centralized CO₂ treatment: Rejected
 - -90 kg/m3 loading (351kg/d feed peak tank) (1323kg/d feed system)
 - 12.2mg/L across the peak tank requires 5.8mg/L CO₂ inlet condition
 - Requires 61.5% CO2 removal efficiency at central treatment (does not include FSB CO2 production)
 - Can't shut down flow to make modifications
- Decentralized CO₂ treatment beside tank: Rejected
 - large flow and footprint required
 - major tank modifications required (screened inlet / outlet)

Options Evaluation

- In-tank aeration: Selected
 - Advantages:
 - Strips CO₂ at source
 - More stripping on highest loaded tanks
 - Minimal infrastructure change
 - No additional footprint
 - Disadvantages:
 - Potential disruption to tank hydrodynamics
 - Potential for suspension and shearing of solid waste
 - Operational challenges


In-tank Aeration: Alpha Pilot

- Located in top 1/3 of tank depth
- Occupy <4% of tank volume
- Low rise velocity, minimal solids entrainment
- Central float design
- Minimized hard edges and flat surfaces
- 10 HP regenerative blower



Central float made balancing difficult

In-tank Aeration: Beta Pilot

- Alternate float design to address balancing
- Increased number of diffusers in a square arrangement

Continued balancing issues; tank operability concerns

In-tank Aeration Pilot: Results

- Effectively removes CO2 (up to 5 mg/L delta achieved)
- CO2 removal efficiency less than small scale testing suggested (approx. 50%)
 - possible cause includes geometry, water impurities, salinity
- No observable solids entrainment or increase in turbidity
- No observable negative reaction from fish
- No observable impact to tank hydrodynamics
- Scalable performance = flexibility
- Cumbersome for operators during fish handling

In-tank aeration determined to be a viable solution

Implementation Phase

- Decision was made to proceed with a full scale implementation on all Quarantine and Grow-out Tanks
- Product Design Considerations
 - Fish friendly
 - Removable
 - Adjustable air flow
 - Adjustable deployment depth
 - Minimal above-water exposure
 - Minimal impact on water temperature

Improve user and fish friendliness

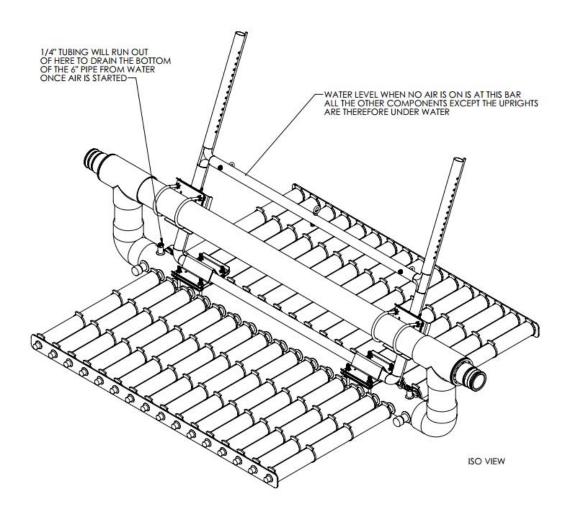
Implementation Phase: Process Air Supply

Redundant Air Supply

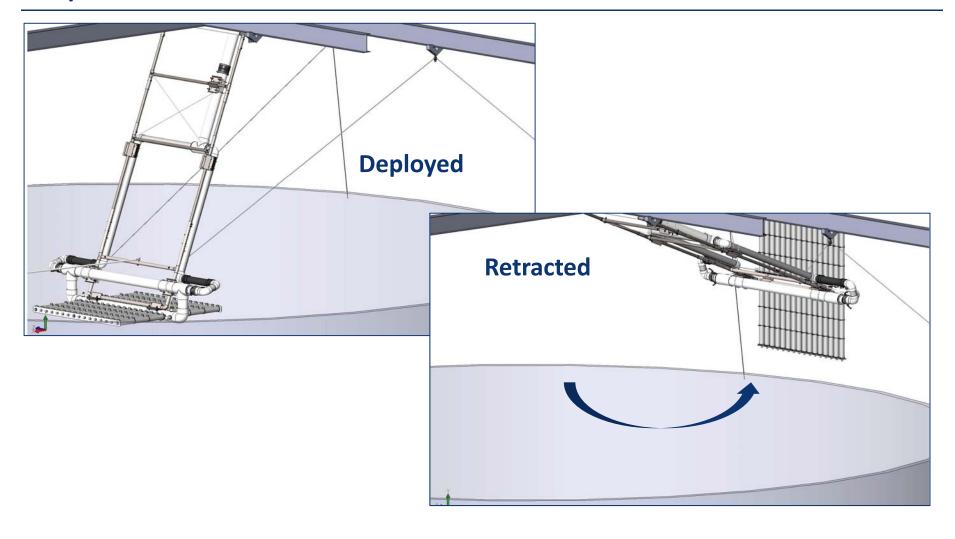
- Four 15 hp Regenerative Blowers,
 2300 SCFM Air (@ 60" WG)
- Provides all of the air required for both Grow-out and Quarantine modules

Redundancy to mitigate mechanical risk

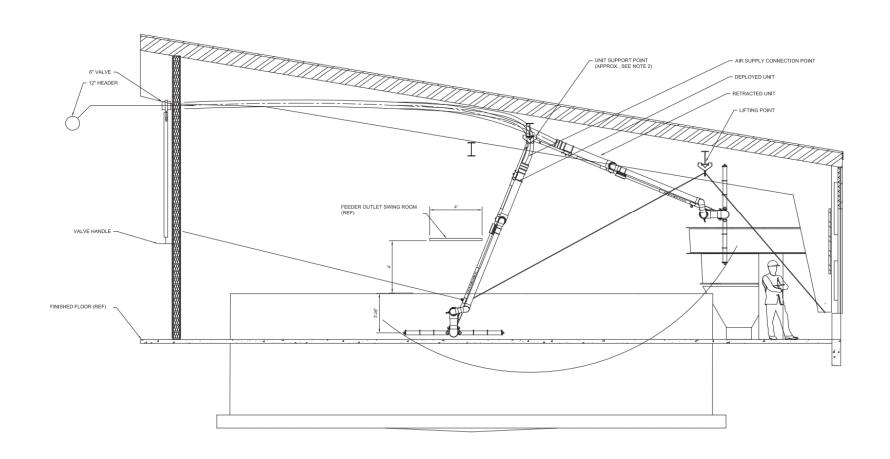
Implementation Phase: Air Temperature Control


Water cooled heat exchanger

- 60 deg C (140 F) In
- 18 deg C (65 F) Out
- 2300 SCFM (10,177 lb/hr) Air flow
- 27.4 gpm (13,678 lb/hr) Water flow


Prevents culture temperature gain due to air injection

Implementation Phase: In-Tank Aeration Device


Scaled based on pilot performance

Implementation Phase: In-Tank Aeration Device

Device is suspended and retractable

Implementation Phase: In-Tank Aeration Device

Device is suspended and retractable

Aeration Device Deployed

Aggressive shallow aeration at tank center

Aeration Device Retracted

Retracted during fish handling or for maintenance

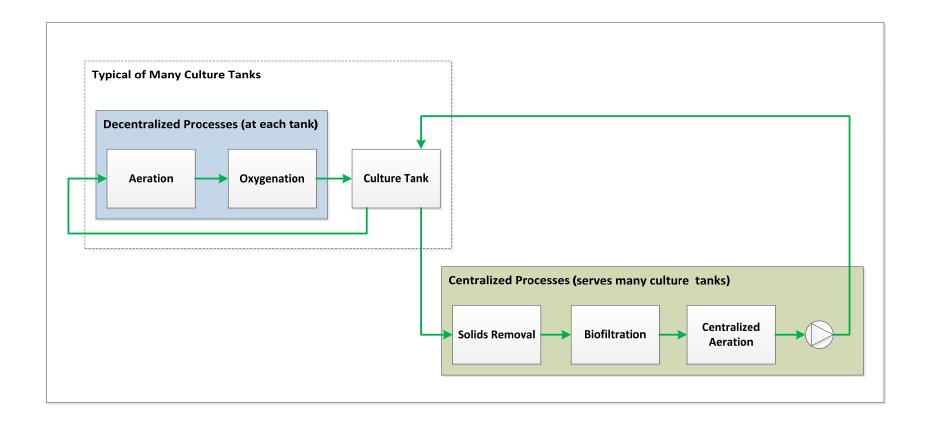
Performance Metrics (CO2)

Description	Units	No Aeration	In-Tank Aeration	Change
System				
Feed Load (to culture field)	kg/d	743	1200	62%
Flow Rate (to culture field)	lpm	46500	56850	22%
Peak Tank				
Feed Load (to peak tank)	kg/d	294	415	41%
Flow Rate (to peak tank)	lpm	10620	11370	7%
CO2 conc. (side drain)	mg/L CO2	18	18	0%
CO2 conc. (bottom drain)	mg/L CO2	21	20	-5%
CO2 Conc. Weighted Average	mg/L CO2	18.9	18.6	-2%

- Flow to culture tanks was increased; flow to FSB Biofilter reduced
- Flow balanced between all culture tanks

Similar outlet conditions despite 62% increase in feed load

Impacts to Future Design Methodology


Centralized treatment strategy:

- System flow rates (for all processes) are driven by the needs of one limiting water quality criteria
- At high density culture, and at low CO₂ design concentrations, CO₂ is likely to be the limiting factor setting tank HRT

Combination of centralized and decentralized treatment makes sense:

- Allows for peaks to be dealt with at highest loaded tank
- Allows "right-sizing" of flows for other treatment processes
- Reduces flows that need to be conveyed to centralized treatment
- Longer actual tank HRT with shorter effective HRT
- Redundancy of process

Impacts to Future Design Methodology

Combination of centralized and decentralized treatment

Future Work Required

- Improve understanding of the factors impacting oxygen consumption and CO₂ production rates
 - Quantify impacts of swim speed, lighting, stress, and feed composition & loads
- Determine optimal design limits for CO₂
 - Balance between production optimization and cost
- Continue to develop distributed treatment solutions for carbon dioxide removal
 - Develop designs to mitigate impacts to tank operation
 - Performance testing proceeding at Kuterra facility

Questions? kc.hosler@pentair.com

Pentair Aquatic Eco-systems