
America's Partner in Conservation

Environmental Performance of a 3,300 mt Land Based Salmon Farm

Brian Vinci

NOT ALL SALMON ARE CREATED EQUAL

Brian Vinci

elletier et al. 2009. Not all Salmon.pdf - Adobe Reader

Help

200%

 \leftrightarrow

(++)

Find

Edit View Document Tools Window

🔊 - 🚺

Environ. Sci. Technol. 20

h

a

h

fi

SI

u

ti

р

e

C

p fe

Not All Salmon Are Created Equal: Life Cycle Assessment (LCA) of Global Salmon Farming Systems

NATHAN PELLETIER,^{†,*} PETER TYEDMERS,[†] ULF SONESSON,[‡] ASTRID SCHOLZ,[§] FRIEDERIKE ZIEGLER,[‡] ANNA FLYSJO,[‡] SARAH KRUSE,[§] BEATRIZ CANCINO,[⊥] AND HOWARD SILVERMAN[§]

School for Resource and Environmental Studies, Dalhousie

111

- Salmon Farm Model Description
- Effect of Rearing Density
- Cost Estimation
- Environmental Performance Analysis
 - -Energy Consumption
 - -Greenhouse Gas Emissions

 Initial Effort – Four egg hatches per year every 3 months targeting 2,500 MT/yr

• First Revision – Increased rearing density targeting >3,000 MT/yr

• Second Revision – Two hatches per year with cold banking to create four groups of fish

RAS Process Design

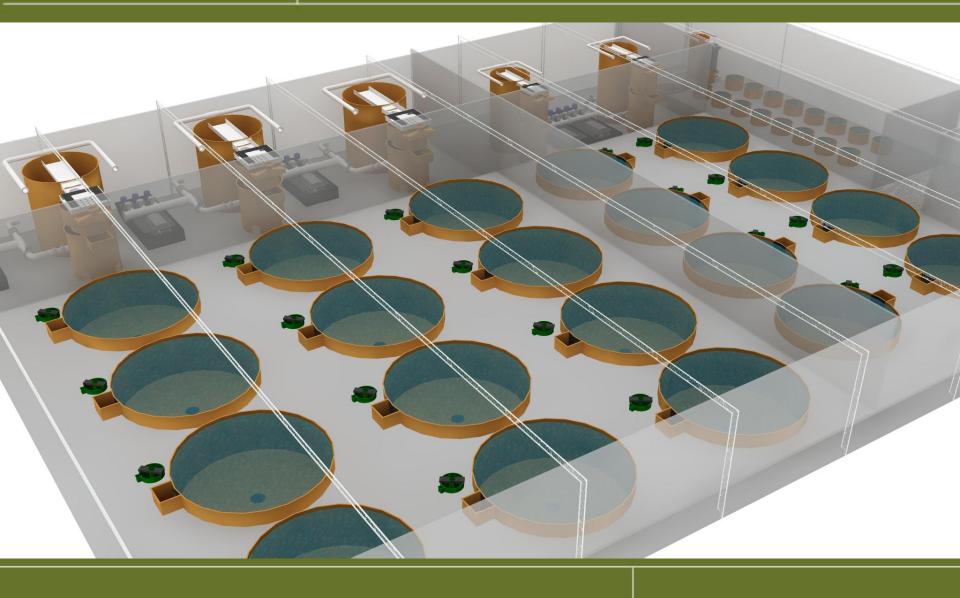
- Dual-Drain Culture Tanks
- Radial Flow Settlers
- Microscreen Filtration
- Fluidized Sand Biofiltration
- Cascade Aeration for CO2 Stripping
- Low Head Oxygenation for O2 Addition
- Ozonation

(Hr

(12)

(9)

- Total Suspended Solids of 5 mg/L
- Total Ammonia Nitrogen of 1.5 mg/L (0.6)
- Dissolved CO2 of 15 mg/L
- Dissolved O2 of 100% saturation
- Nitrate-Nitrogen of 75 mg/L or less
- Water Temperature of 15°C (12)
- Piping Sized for 0.6 m/s and 1.5 m/s

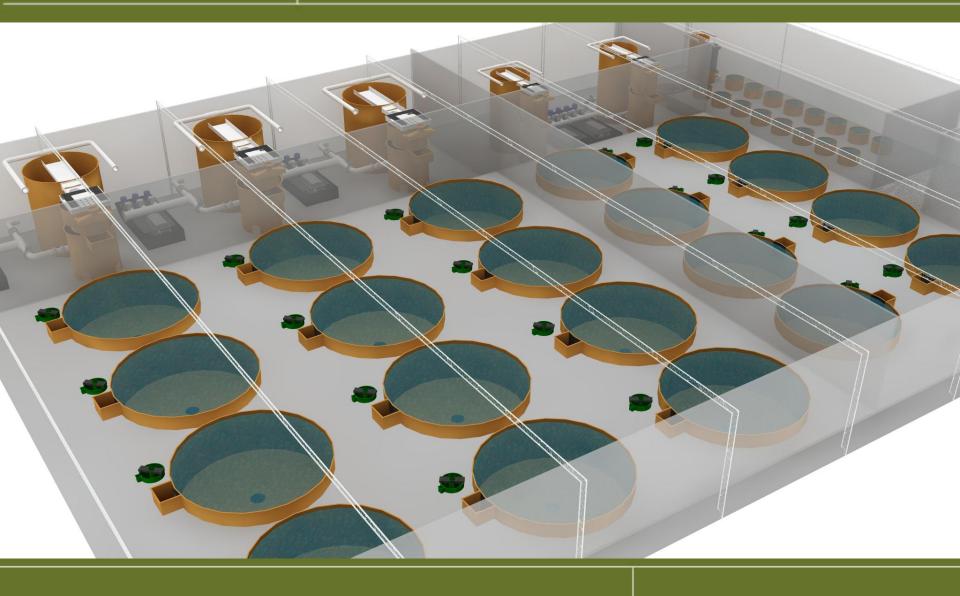

Updated Data & Inputs

- Thermal Growth Coefficients:
 - Fry 1.25
 - Smolt 1.40
 - Pre-Growout 2.00
 - Growout 2.30

• 88% HOG Yield (after 5% loss in purge)

America's Partner in Conservation

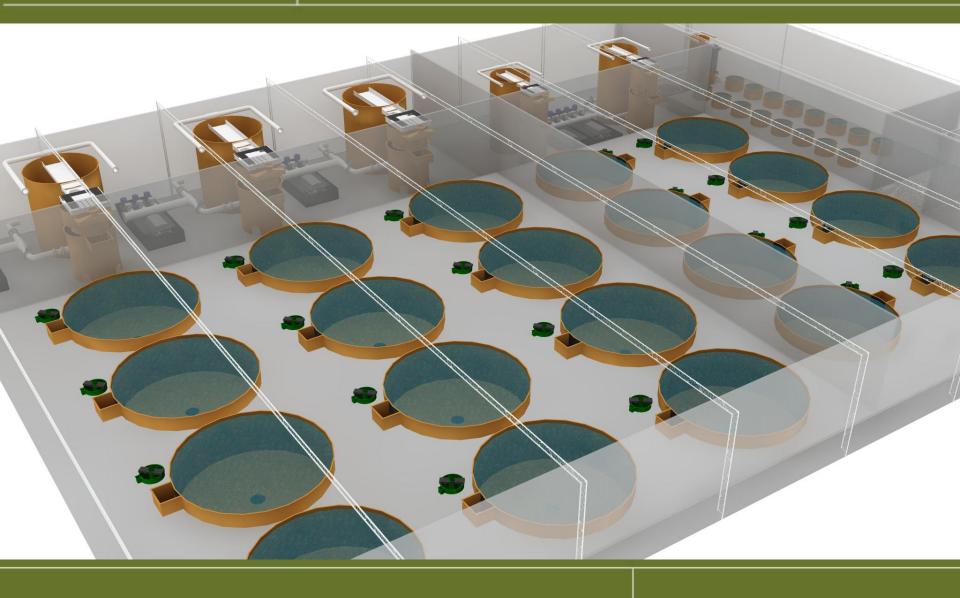
Fry Rearing



Fry Rearing

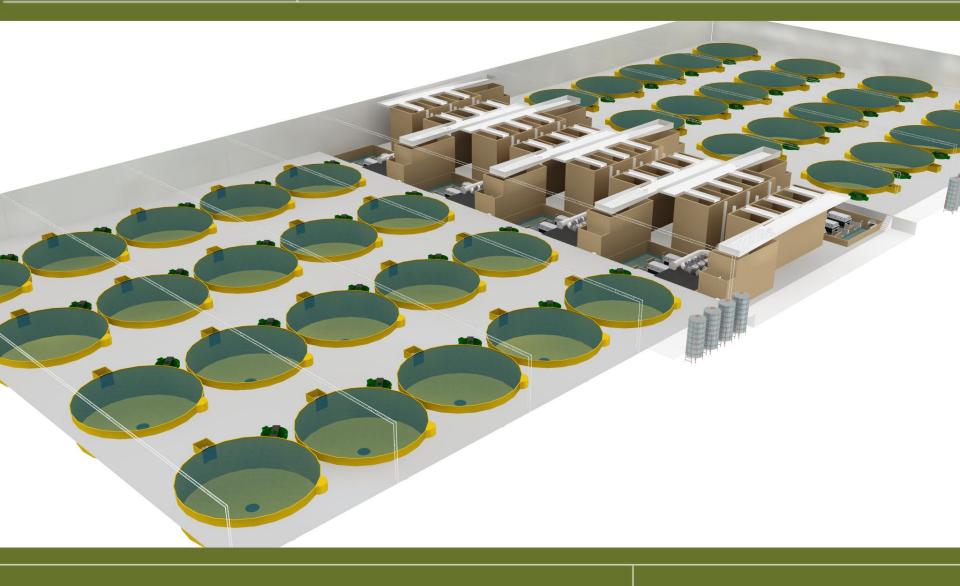
- Week 0 to Week 13 (0.18 g to 7.2 g)
- 12°C Water Temperature
- One RAS:
 - 18 Tanks: 2 m diameter by 1 m deep
 - -1.5 m^3 per minute recycle flow
 - Tank exchange rate of 37 minutes
 - Maximum density of 25 kg/m³
 - 200% volume exchange per day
 - 9 mg/L Nitrate-Nitrogen

America's Partner in Conservation


Smolt Rearing

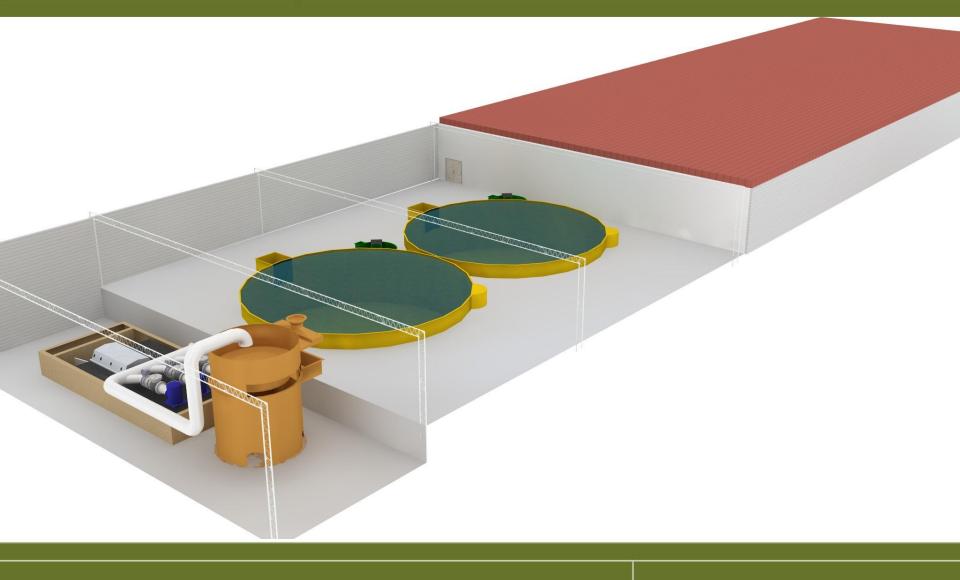
- Week 14 to Week 34 (7.2 g to 105 g)
- 15°C Water Temperature
- Two RAS:
 - 4 Tanks: 9 m diameter by 2 m deep
 - 11.4 m³ per minute recycle flow
 - Tank exchange rate of 45 minutes
 - Maximum density of 35 kg/m³
 - 21% volume exchange per day
 - 73 mg/L Nitrate-Nitrogen

America's Partner in Conservation


Pre-Growout Rearing

- Week 35 to Week 50 (105 g to 488 g)
- 15°C Water Temperature
- Three RAS:
 - 4 Tanks: 10 m diameter by 3 m deep
 - -22 m^3 per minute recycle flow
 - Tank exchange rate of 43 minutes
 - Maximum density of 42 kg/m³
 - 26% volume exchange per day
 - 73 mg/L Nitrate-Nitrogen

America's Partner in Conservation


Growout Rearing

- Week 51 to Week 90 (488 g to 5000 g)
- 15°C Water Temperature
- Eight RAS:
 - 5 Tanks: 16 m diameter by 4.25 m deep
 - -94.6 m^3 per minute recycle flow
 - Tank exchange rate of 45 minutes
 - Maximum density of 65 kg/m³
 - 24% volume exchange per day
 - 75 mg/L Nitrate-Nitrogen

America's Partner in Conservation

Purge & Processing

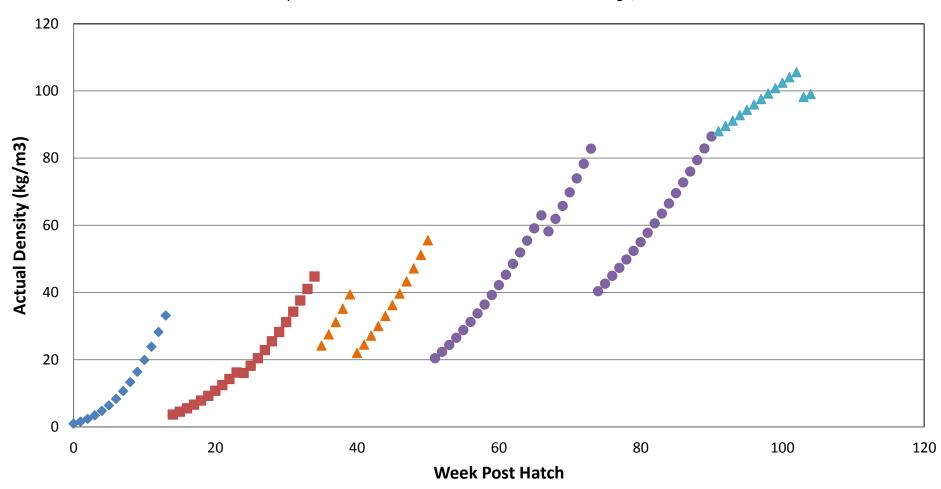
- Minimum 10-day depuration
- 14°C Water Temperature
- One Partial RAS:
 - 2 Tanks: 16 m diameter by 4.25 m deep
 - -37.9 m^3 per minute recycle flow
 - Tank exchange rate of 45 minutes
 - Maximum density of 75 kg/m^3
 - 96% volume exchange per day
 - 0 mg/L Nitrate-Nitrogen

Totals

 RAS Culture Volume 	39,791 m ³
- Fry Rearing	$57 m^3$
– Smolt Rearing	1,018 m ³
– Pre-Growout Rearing	$2,827 m^3$
– Growout Rearing	$34,180 m^3$
– Purge & Processing	$1,709 m^3$
• Buildings	28,191 m ²
– Fry, Smolt, Pre-Growout	$5,382 m^2$
– Growout	$21,320 m^2$
– Purge & Processing	$1,489 \ m^3$

America's Partner in Conservation

Totals

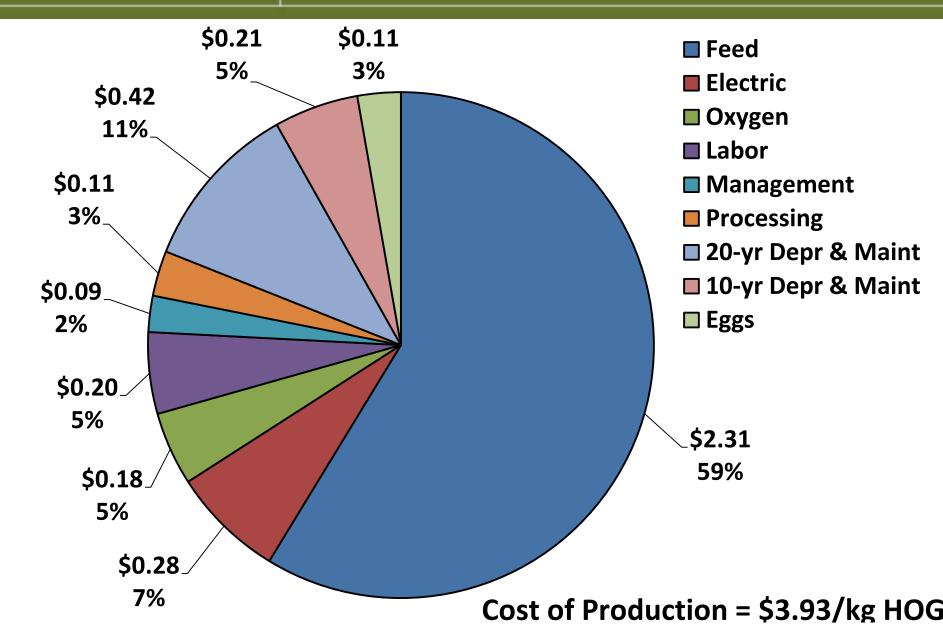

- RAS Recirc Flow
 - Fry Rearing
 - Smolt Rearing
 - Pre-Growout Rearing
 - Growout Rearing
 - Purge & Processing
- Water Supply
 - Fry, Smolt, Pre-Growout
 - Growout
 - Purge & Processing

233,800 gpm 400 gpm 6000 gpm 17,400 gpm 200,000 gpm 10,000 gpm 2,015 gpm 195 gpm 1,520 gpm 300 gpm

America's Partner in Conservation

Revised Production-3,300 MT HOG

◆ Fry ■ Smolt ▲ Pre-Growout ● Growout ▲ Purge/Harvest


America's Partner in Conservation

Cost Assumptions

- Feed: \$1.50 per kg
- Electricity: \$0.05 per kWh
- Oxygen: \$0.20 per kg
- Labor & Processing: 25 FTEs
- Management Allowance: \$300,000
- Eyed eggs at \$0.30 per egg

America's Partner in Conservation

Cost of Production

Energy & GHG Analysis

- Follows methods published by John Colt:
 - Colt et al. (2008). Energy and resource consumption of land-based Atlantic salmon smolt hatcheries in the Pacific Northwest
- Energy Analysis

– Energy balance using densities from Tyedmers

- GHG Analysis
 - Factors based on Tyedmers

Energy Analysis

- Material Inputs
 - Feed
 - Pure Oxygen
 - Calcium Carbonate
- Energy Inputs
 - Electrical
 - Gas/Diesel/Natural Gas
- Fixed Capital
 - Concrete, Steel, Fiberglass, Plastic

Energy Analysis

- Direct Energy
 - Heat (Δ H) released when burned in a calorimeter
- Indirect Energy

- Energy required to produce a component

- Transportation Energy
 - Energy required to transport material to/from

America's Partner in Conservation

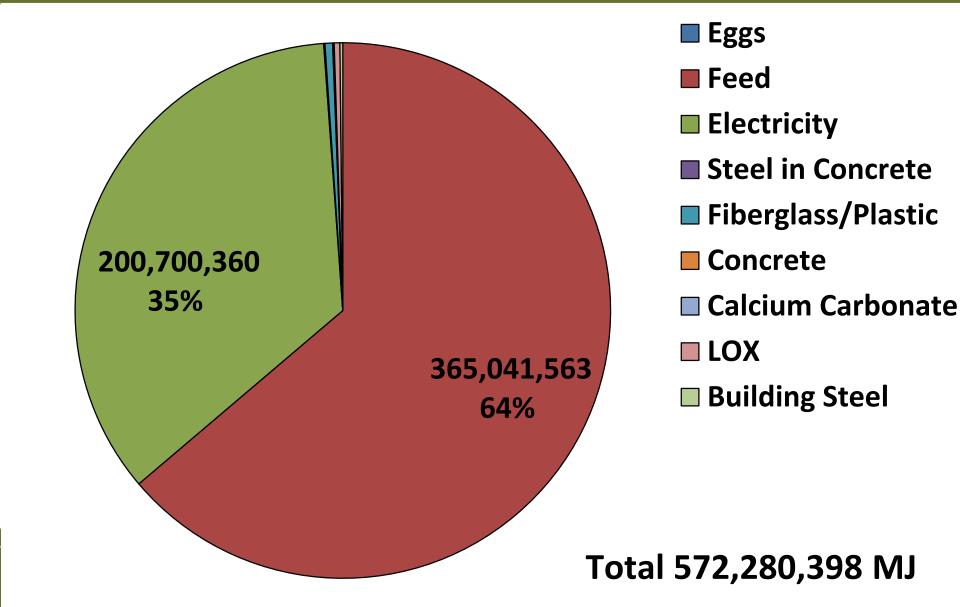
Energy Density

Component	Direct Energy	Indirect Energy	Transportation Energy
Feed	22.38 MJ/kg	48.08 MJ/kg	2.105 MJ/MT-km
Electricity	10.29 MJ/kWh	0.62 MJ/kWh	
Steel		25 MJ/kg	
Concrete		1 MJ/kg	
Fiberglass		75 MJ/kg	
Calcium Carbonate		0.046 MJ/kg	2.105 MJ/MT-km
LOX		0.240 MJ/kg	2.105 MJ/MT-km
Eggs	7.50 MJ/kg		

America's Partner in Conservation

Inputs

Component	Units	Value
Eggs	kg/year	215
Feed	kg/year	5,072,047
Electricity	kWh/year	18,396,000
Steel in Concrete*	kg/20 year	337,676
Fiberglass/Plastic*	kg/20 year	704,700
Concrete*	kg/20 year	6,514,473
Calcium Carbonate	kg/year	760,807
Liquid Oxygen	kg/year	3,043,228
Steel in Building*	kg/20 year	801,060


America's Partner in Conservation

Energy Usage

Component	Direct Energy	Indirect Energy	Transport Energy	Total Energy
	MJ	MJ	MJ	MJ
Eggs	1,612			1,612
Feed	113,512,412	243,864,020	7,665,131	365,041,563
Electricity	189,294,840	11,405,520		200,700,360
Steel in Concrete*		8,441,900		422,095
Fiberglass/Plastic*		52,852,500		2,642,625
Concrete*		6,514,473		325,724
Calcium Carbonate		34,997	153,303	188,300
LOX		730,375	1,226,421	1,956,796
Steel in Building*		20,026,500		1,001,325

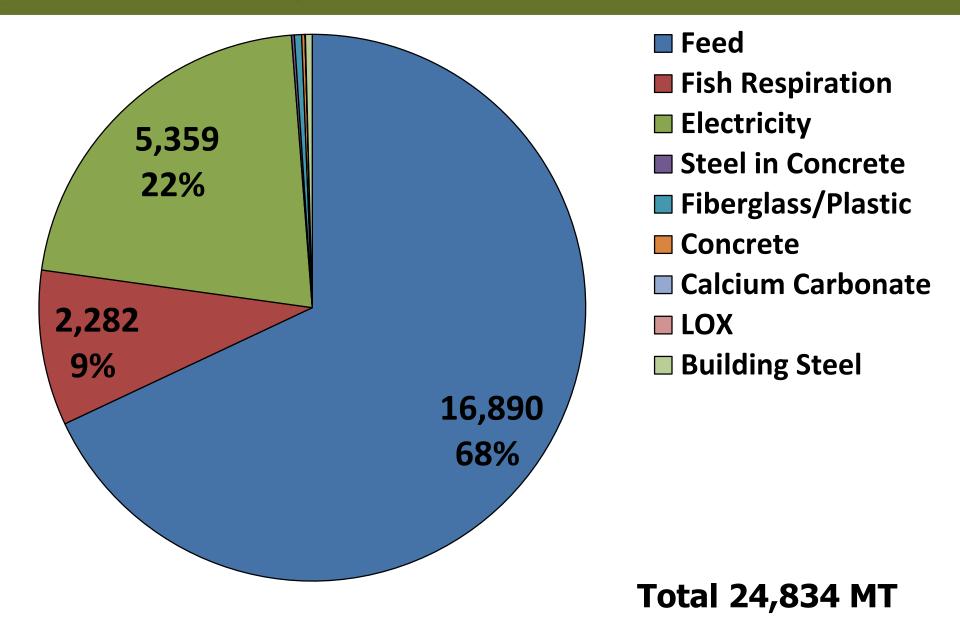
America's Partner in Conservation

Energy Usage

America's Partner in Conservation

Greenhouse Gas Assumptions

Component	Equivalent CO2 Production
Feed - Fish Respiration	450 g/kg
Feed – Manufacturing	3,300 g/kg
Electricity (90/10)	26.7 g/MJ
Steel	2500 g/kg
Fiberglass/Plastic	3000 g/kg
Concrete	150 g/kg
Calcium Carbonate	0.341 g/kg
Liquid Oxygen	1.78 g/kg
Gasoline	92.6 g/MJ
Natural Gas	57.9 g/MJ


America's Partner in Conservation

Greenhouse Gas Emissions

Component	Carbon Dioxide Equivalents
	MT/year
Feed – Fish Respiration	2,282
Feed – Manufacturing	16,890
Electricity	5,359
Steel in Concrete*	42
Fiberglass/Plastic*	106
Concrete*	49
Calcium Carbonate	
LOX	5
Steel in Building*	100

America's Partner in Conservation

Greenhouse Gas Emissions

Total Energy Consumption per kg of fish (whole, wet weight):

- This Study: 153 MJ/kg
- This Study (feed only) 97 MJ/kg
- Smolt in Recirc (Colt): 288 MJ/kg
- Salmon in Net Pens (Ayer): 27 MJ/kg
- Char in Recirc (Ayer): 233 MJ/kg

Total GHG emissions per kg of fish (whole, wet weight):

- This Study: 6.6 kg/kg
- This Study (feed only) 4.5 kg/kg
- Smolt in Recirc (Colt): 11 kg/kg
- Salmon in Net Pens (Ayer): 2
- Char in Recirc (Ayer):

11 kg/kg 2.1 kg/kg 28 kg/kg

Thank You

• Thank You for Your Attention!

• Questions? Discussion?