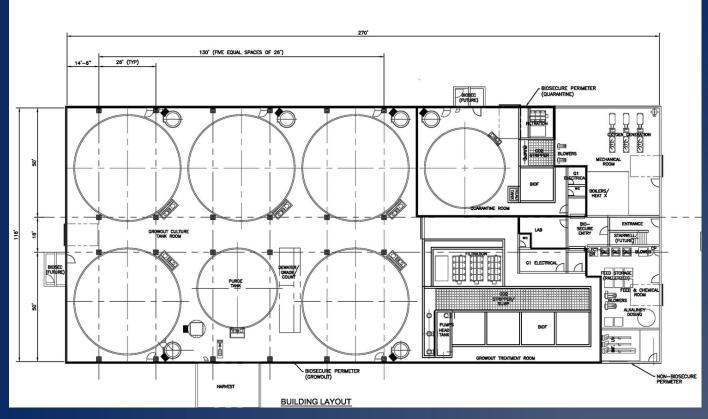
Analysis of Capital Costs for the 'Namgis RAS Salmon Pilot Project.

Context

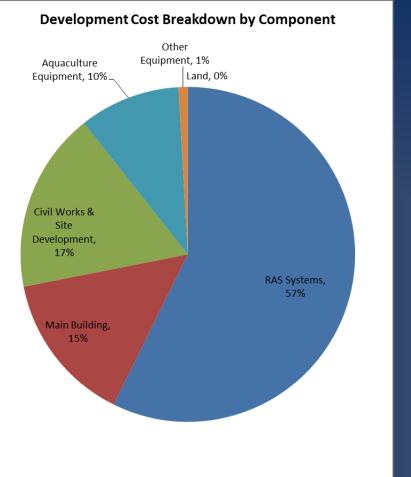
'Namgis Project Objectives

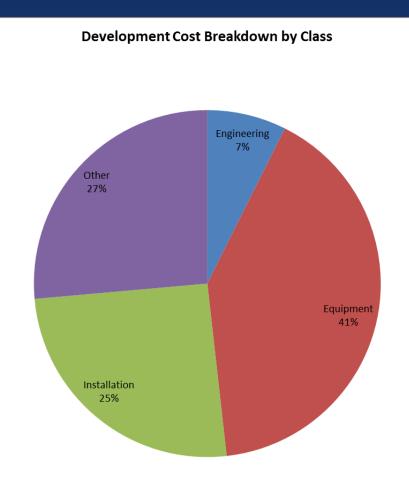
- Confirm the key assumptions: technical, biological, environmental and economic.
- Generate positive cash flow: Must be able to service the markets
- Meet environmental sustainability criteria of owner and stakeholder


Constraints and Unique Approaches

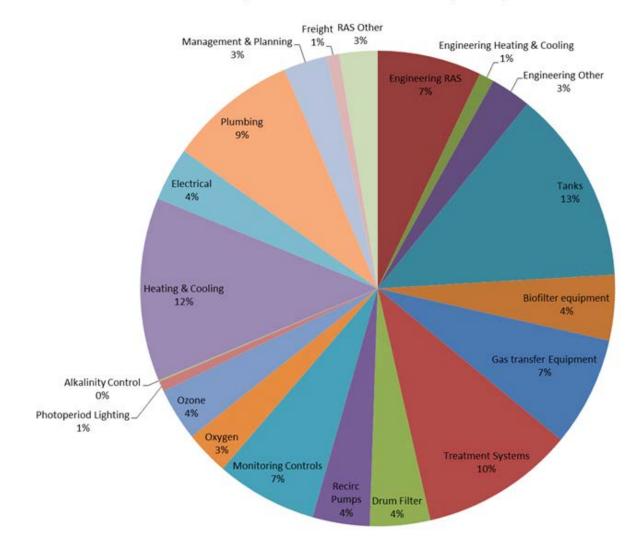
- Small scale
- Remote
- Smolts purchased from outside source.
- Performance monitoring equipment
- Effluent disinfection.
- conservative water quality standards Priority for achieve best fish performance
- Flexibility to allow for expansion and system modification.
- Overlap in permitting, funding, design and construction processes

Methods


Over 400 invoices Over 400 development tasks One database Lots of gaps Lots of questions Lots of analysis


The Facility

Atlantic Salmon	470mt/year	3 smolt inputs/year
Tanks: 5x 500m3, 2x 250m3 fiberglass	2 Independent RAS systems + Purge	1163kg feed/day total capacity
Generated oxygen (VSA)	Fluidized sand biofilter,	Steel building
Groundwater supply	Rotary Drum filters (80 micron)	Low head oxygenators (LHO)


Summary of Costs- General

Summary of Costs- General

RAS Systems Cost Breakdown by Component

Summary of All Costs

Development	\$'000		\$/kg production
RAS Systems	5,068	57%	10.8
Civil Works and Site Prep.	1,542	17%	3.3
Main Building	1,290	15%	2.7
Aquaculture Equipment	864	10%	1.8
Other Equipment	79	1%	0.2
Total Development	8,843	100%	18.8
Other (Non -Development)			
Front End Engineering, Planning permits	537	65%	
Pre Production Operating Expenses	295	45%	Recruitment, salaries, etc
Total Other	832	100%	8.6% of Total Cost

Development costs includes expenditures that are delayed 9,675k total project costs

Summary of Costs- RAS Treatment Systems

RAS Treatment Systems (57% of Total Costs)

	Purge	Quarantine	Growout
Drum Filter	1	1	3
CO2 Stripper	1	1	1
LHO (1/tank)	1	1	5
Biofilter		1	1
Recirculation Pumps	1	2	3
Total Cost	\$250,381	\$932,421	\$3,420,499
Production Capacity		50mt/yr	420mt/yr
Unit Cost		\$18/kg	\$8/kg

Clear demonstration of scaling opportunity

In a commercial scale facility one purge facility could service several modules

RAS System Costs

Tanks (13% of RAS cost)

Size	500m3	250m3
\$/tank	\$104,549	\$73,236
\$/volume	\$194/m3 ¹	\$267/m3
Fiberglass Sides	\$413	/m2²
Concrete Base	\$161	./m2
Cost Breakdown (All tanks combined)		
Tank sides & equipment	49	%
Concrete Base	25	%
Compact fill	13	%
Assembly	99	%
Other	4%	

¹ 27% less. ² Traditional 8" concrete wall cost about \$388/m2, Stay in place forms about \$334/m2

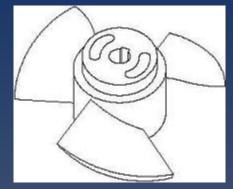
Biofilter (11% of RAS cost)

52%
32%
10%
6%
\$539,760
\$11,387 ¹

Approximation since treatment system also include structures for CO2 stripper, drum filter, header tank and pump sump.

¹47.4kg TAN /day (1163kg feed/day)

Biofilter is 11% of total RAS cost although relative importance is much higher



Recirculation Pumps (4% of RAS cost)

	\$/pump	\$/USGPM	Capacity	
Growout pumps* (3)	\$40,603	\$5	8018 gpm, 16' TDH	
Quarantine pumps* (2)	\$25,275	\$11	2268 gpm, 15' TDH	
Purge pump (1) \$31,900 \$21 1500 gpm, 15' TDH				
*Vertical shaft, wet pit axial flow style				

Recirculation pumps are only 4% of total RAS cost but relative importance is much larger.- Do not compromise on quality ! Large Scaling Opportunity (\$/unit flow)

Drum Filters (4% of RAS cost)

	\$/filter	Unit cost	Capacity	
Growout Drum Filters(3)	\$56,863	\$10/usgpm	5,826 gpm @25mg/I TSS, 80 micron screen	
Quarantine Drum Filter	\$36,800	\$13/usgpm	2,796 gpm @25mg/l TSS, 80 micron screen	
Note: Both side and bottom drains flow through drum filters. Cost does not include backwash flow controls				

Moderate scale opportunity.

Drum filters are only part of the solution for dealing with suspended and dissolved solids.

Ozone (4% of RAS cost)

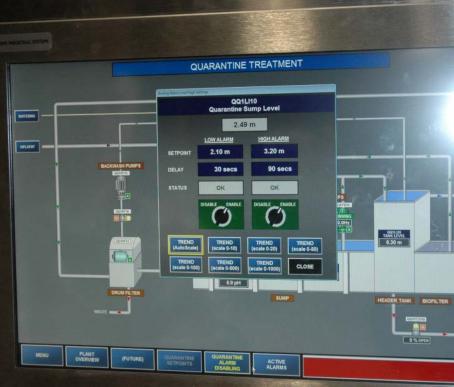
Component		
Generator	55%	1200 gm/hr, water cooled, central generator with distributed dosing, air O3 sensors and alarm, PLC control.
Automated dosing in LHO	21%	Manual dosing is about 20k less
Installation- local	11%	
ORP Probes	6%	Digital, high quality (eg Rosemount)
Installation	7%	Hook up power & water, run o3 lines, test
Total Cost	\$182,000	

When combined with drum filters, cost is 8% of total RAS to deal with suspended and dissolved solids. High quality probes are only 6% of Ozone cost therefore some redundancy is affordable and probably essential

Oxygen Generators (**3%** of RAS Cost)

	Generators*	Liquid Oxygen**	
Capital (Total \$)	\$151,559		
Capital (\$/kg total production)	\$0.48		
Operating (\$/kg oxygen)	\$0.024	\$0.35	
* Three generators (1/2 Ton/day, 250lpm, VSA technology), 2 compressors, 1 product tank. ** Delivered to port McNeil + equipment rental			

Oxygen generation provides excellent return on investment compared with purchased liquid oxygen <u>at this location</u>



Monitoring and Controls (7% of RAS costs)

MCAS Control Panel	52%	48% hardware, 52% design and programming	
Motor Control Panel	28%	69% hardware, 31% design, 49 motor controls	
MCAS Instruments	17%	100% hardware, 45 switches and sensors, 38 alarms	
Power Use Monitoring	3%		
Total	\$344,294		
Features: Totally custom solution, Industrial quality, Maximum flexibility, Local parts and service. Servicing three separate RAS systems			

Programming and automation are large cost components. How much automation is necessary ? Custom, industrial quality components may be more than what is required for these types of facilities.

Heating and Cooling (13% of RAS cost)

Component		
System install*	~ \$461,019	67%
Tank Base Heating Coils	\$67,840	10%
Engineering	\$51,528	8%
Heat Pumps (2)+ heat exchanger	\$42,000	6%
Geothermal wells and connections	\$37,300	5%
Air Ducting	\$24,600	4%
Air Heat Recovery System (ERV's)- Postponed		
Total	\$684,287	100%
* Air heaters, insulated lines, electrical connection and controls.		

This is an area of large uncertainty.

It is also one of the largest cost components Breakdown of install cost is not available at this time

Gas transfer equipment (7% of RAS cost)

Component		
Low head oxygenators (LHO) (1/tank)	35%	Fiberglass components. Excludes concrete bases and connected plumbing
CO2 Stripper Blowers & Equipment	25%	Large scaling opportunity (see below) ¹
CO2 Stripper Misc Equipment	17%	Includes flat orifice plates with crown nozzles (57m2 area for main CO2 stripper). Excludes concrete.
Oxygen control	12%	Tank Diffusers, oxygen solenoids/ control panel, blower install
Installation	11%	
Total	\$375,288	
¹ Blowers - Growout	\$2 /cfm	
Blowers - Quarantine	\$6 /cfm	
Blowers - Purge	\$8 /cfm	

When concrete costs are added in the total may be closer to 10% of RAS costs CO2 strippers take up a lot of building space

Main Building Costs

Summary of Costs- Main Building

15% of total cost

Cost brea	Unit Cost				
Building Structure	48%	Building structure	\$20/sq ft	\$215/m2	
Foundation	22%	Foundation	<u>\$9/sq ft</u>	<u>\$97/m2</u>	
Interior structures & Finishing	13%	Total Building + Foundation	\$29/sq ft	\$312/m2	
Concrete Floor	12%	Concrete Floor	\$10/sq ft	\$409/m2	
Overtank lifting beams	4%				
Total Cost	\$1,310,672				
Total areas (117' x 271' x 13'): 31,823 sq ft (2956m2), Floor area 15,774 (1465m2) Building roof is not clear span. There are support post throughout.					

Building and Foundation represent about 10.5% of total cost. Tanks use about 35% of the space, Two main treatment systems use 16% Space for created for fish handling (an area of uncertainty) was high.

Civil Works Costs

Summary of Costs- Civil Works

Site Preparation (4% of total cost)

Component					
Fill	67%	Mainly Excavating, sorting and screening on-site material.			
Overburden removal	18%	Mainly Chipping stumps & slash (150 truck loads)			
Other	11%	Site grading/ compacting,			
Clean Up	4%				
Timber removal	0%	Timber removal offset by log sales			
Total	\$341,336				

Locate close a source of fill !

Summary of Costs- Civil Works

Other Civil Works (9.5% of total cost)

Component			
Other Buildings & Structures	\$205,877	24%	Harvest area, Office, LOX facility, fencing, lighting,
Back Up Power	\$167,191	20%	1x 300KVA, 600V, transfer switch, installation, fuel storage
Water Supply	\$187,772	22%	3 production wells (8" and 12"), plumbing , electrical
On Site Management	\$158,021	19%	
Main Power	\$63,766	8%	Pole and transformer
UV treatment	\$31,752	4%	2x required dosage (60mj/cm2)
Misc	<u>\$27,015</u>	3%	Accounting, labour mobilization and LOA
Total	\$841,394	100%	

Only one back up generator. One additional for critical life support may be required given high rate of power failure in the area.

Summary of Costs- Effluent Treatment

3% of total cost

Infiltration Basin*	39%	Mainly excavation costs. Cost offset by use of excavated fill for the main facility.		
Solids settlement cones	26%	3x 9' Fiberglass cones installed with plumbing and pumps		
Solids Storage and Handling	18%	Storage tank, trash pump, transport tanker, raised platform for tank and loading area.		
Effluent Disinfection	13%	Chlorination/ de-chlorination system. Not a legal requirement		
Domestic sewage treatment	3%			
Misc Plumbing	1%			
Total	\$282,896			
*Infiltration basin area: 2600m2, Main building footprint: 2000m2 : Land use impact is high l				

*Infiltration basin area: 3600m2, Main building footprint: 2900m2 : Land use impact is high !

No further treatments are required today in this location but probably will be in the future and/or other locations

Equipment Costs

Equipment (Non-RAS)

11% of Total Cost

Fish handling	37%	12" fish pump & Piping (60%), grader, counter, fish Crowder, moveable grading station.
Feeding	20%	Central feed systems, hoppers, bulk feed lifting, etc
Harvesting	16%	Percussion stunners, chutes, etc
Other	16%	Primarily a contingency for fish handling + nets, scales, mort storage.
Other Equipment	8%	Maintenance, Lifting, Safety/ Security, Office/ IT, Vehicle
Lab	2%	WQ instruments etc.
Cameras	1%	
Biomass Scanner	0	Biomass scanner leased. (30k to purchase)
Total	\$842,919	

An area of high uncertainty (equipment handling) Costs do not include overhead lifting beams or extra walkway space Equipment can be shared with future modules

Concrete 13% of Total Cost

Formwork	34%	RAS Treatment System	42%	
Concrete	23%	Building Foundation	25%	
Management & Safety	19%	Tank Bases	15%	
Rebar	16%	Building Floor	11%	
Placement and Finishing	8%	Other	6%	
Total	\$1,131,402	Basic concrete mix	\$215/m3	
Typical 8" Finished Wall Cost ¹	\$388/m2	Concrete additives ²	\$103/m3	
		Average concrete cost	\$318/m3	
¹ Assembled fiberglass tank walls cost \$413/m2. Stay in place formed walls would probably cost \$334/m2. ² Concrete Water proofing cost \$48/m3				

Labour and management cost are a largest component. Living out allowances are large portion of labour Concrete additives are 32% of concrete mix costs.

Plumbing (6% of total cost)

Pipe	36%	RAS general plumbing (large dia.), Primarily PVC	53%	
Valves	31%	RAS final connections (small dia.)	16%	
Pipe Fittings	15%	Tanks & Treatment System (large dia,)	10%	
Flanges	15%	Heating and Cooling	5%	
Couplers	3%	Water Supply	4%	
Total Cost	\$561,986	Effluent	9%	
Materials ¹	71%	Other	3%	
Installation	29%			
¹ 85% of cost is for materials >18"				

Large diameter pipe and valves are the largest costs

Electrical (4% of total cost)

RAS General	52%	Underground main electrical, Motor control Center wiring, Install and connect electrical, Monitoring & control system wiring
Main supply	18%	Pole and Transformer
Building Misc.	13%	`
HVAC	10%	
Supply Wells	7%	
Total	\$354,324	
Materials	58%	
Labour	42%	Local Electrician- \$70/hr, Apprentice- \$55/hr

Additional wiring to cover uncertainties in design and project interruptions increased electrical costs.

Planning and Design

Engineering (7% of total cost)

RAS Engineering	50%	Schematic design(7%), Process & Layout (17%), Construction Drawings (27%)
RAS Commissioning, & Support	17%	Research (options assessments), inspections, training, drawing updates.
Misc	11%	Front end engineering, structural inspections
Heating and Cooling	10%	
Hydrological	8%	Flood risk (2 studies), Groundwater flow (2 studies)
Geotechnical	2%	
Effluent	2%	Infiltration basin design
Total	\$714,384	

Only 7% of RAS cost but huge impact on total cost

Significant percentage of costs were used for investigating technology and design options.

The full value of detailed construction drawings (Effective tendering) could not be used since designs were changing during construction.

Planning and Design

Tendering & Planning

Date	Budget (millions)	Production (mt/yr)	Key Design and Technology Changes		
Sept 2010	3.0	175	Two species , 135m3 tanks, Two buildings, Two RAS systems		
Dec 2010	5.0	315	One species, 500 M3 tanks, 6 tanks, Two temperatures, Two RAS systems, Purge system, One building		
May 2011	6.5	315	First detailed installation estimate		
Sept 2011	6.0	390	One temperature, Quarantine facility, 5 tanks, Propane heating		
Dec 2011	6.9	390	Construction Starts. First estimate of new heating solution cost		
Aug 2012	6.6	461	Maximum rearing densities increased from 50 to 90kg/m3, Cost reduction initiatives vs discoveries of new costs.		
Dec 2012	7.6	461	New heating solutions, Effluent disinfection, Harvest equipment addition, Additional oxygen generator.		
June 2013	7.6 ¹	377	Increased grilse estimate, Irregular smolt intake, Ongoing cost reduction vs cost discoveries.		
Aug 2013		470	Optimized system expectation (long term)		
¹ Final budg	¹ Final budget does not include delayed but planned future expenditures (eg ERV).				

A reflection of the uncertainties in this kind of business Process of integration and iteration of biological, market, engineering, financial and social factors.

Planning and Design

Tendering & Planning

Key Lessons learned

Minimize overlaps between permitting, funding, design and construction: Maximize the opportunity for effective tendering processes. Minimize interruptions during construction

Use of public land and public funds can be costly (\$ and Time)

Include a large contingency in any new RAS project budgets (\$ and Time)

All business factors must be appropriately integrated throughout the design process.

Scale Impacts

	Reduction scale	"Large Scale" (Grow out facility, 420mt/yr)	"Small Scale" (Quarantine Facility, 50mt/yr)	(Purge Facility)
Tanks		500m3	250m3	
	27%	\$194/m3	\$267/m3	
Recirc Pumps		8000 gpm	2300 gpm	1500 gpm
	55%	\$5/gpm	\$11/gpm	\$21/gpm
Blowers		16,000 cfm	2,300 cfm	
	66%	\$2/cfm	\$6/cfm	
RAS Systems		421mt/yr	50mt/yr	
	58%	\$8/kg	\$19/kg	
Drum Filters		5800 gpm	2800 gpm	
	23%	\$10/gpm	\$13/gpm	

A very small glimpse of potential scale opportunities

Building In Remote Locations

	Local	
Living out allowance (approximate)	S1/S/nerson	30 - 50% Increase in labour. Labour was a significant portion of all installation costs
Concrete mix (30mpa)	\$256/m3 local	\$198/m3 Vancouver (<mark>29% increase</mark>)

Living out costs are also strongly impacted by project delays

Cost of changing rearing densities during design (maximum biomass fixed)

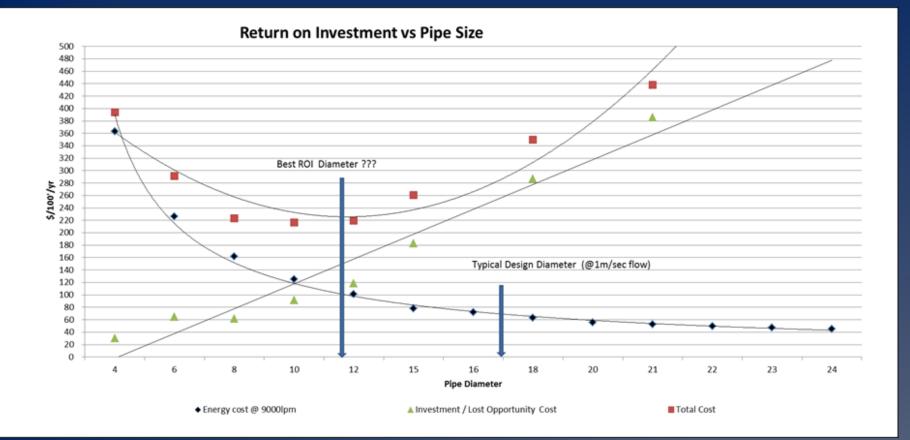
Reduce densities from 100 to 75kg/m3 (25%)	Total Increase in Facility Cost				
Increased Tank cost	2.5%	33% more volume/tank cost			
Increased Building cost (roof, wall, foundation)	1.0%	7% increase in building area/cost			
Increased Treatment system cost	0.0%	Same biomass			
Total Increase in Capital Cost	3.5%				
Benefits					
Fish performance					
Reduce supplemental oxygen cost (aeration is higher percent)					
Increased safety factor (response time) for loss of water supply, market slowdown, etc					

Maybe the most economical rearing densities are lower than we currently think

Opportunities

Opportunities for Reducing Construction Costs

No Further Investigation Required


- Minimize overlaps between funding, design and construction: Ensure effective tendering processes, minimize delays.
- Building in remote areas with small communities can be very expensive. Carefully evaluate these costs
- Ensure that engineering assumptions are appropriate for the project (eg structural)
- Fabric over steel structures may be considerably less expensive than steel
- Increasing production scale offers strong opportunity to reduce unit capital cost, unit operating costs and risk.

Opportunities for Reducing Construction Costs

Further Investigation Required

- Reduce need for Contingency Capacity
 - Optimization of rearing parameters: Water quality, rearing density
 - Optimization of heating /cooling design parameters
- De-nitrification biofilters: Reduce heating, water supply and effluent requirements. Reduce water conditioning costs
- Optimized Engineering:
 - Increase use of modular designs and components: Reduced level of customization
 - Include return on investment (ROI) considerations in design processes. (eg plumbing)
 - Engineering design standards (best design practices) for land based aquaculture facilities (eg Structural).
 - Design include consideration of most cost efficient construction methods (eg Use of Pre-cast concrete components or stay in place forming)
- Large Tanks (>1000m3): Develop effective designs and support systems.

Example: Return On Investment Consideration Applied to Pipe Sizing

Optimized 470mt/yr module (New module at current location)

Using Same Technologies

- No Quarantine Facility (on-site hatchery)
- Purge facility: separate and shared between modules
- No special monitoring equipment
- Reduced land development area
- Current water supply wells sufficient
- Reduced engineering uncertainty
- Efficient tendering and rollout
- Concrete tanks
- Shared aquaculture and other equipment
- Shared admin and maintenance facilities Projected Cost

\$13/kg annual production

Optimized 470mt/yr module (New module at current location)

Using Some Newer Technologies

- Tank Design: Deeper, octagon shape
- Tank Design: Shared wall octagon reduces wall costs by 20% and shrinks foot print by 10%
- Building: Fabric over steel culture area (concrete block foundation)
- Improved Space utilization reduce walkway and working areas by 50%
- Simplified and modular monitoring and controls (50% savings)
- Denitrification reduce required water supply and effluent treatment system capacities (as well as water conditioning costs eg Salt and NaOH)

Other Savings as previous slide

Projected Cost

\$11/kg annual production

Optimized 1500mt/yr module at different location

- Close to major center (reduced overall development costs)
- Larger tank (1000m3)
- Amortization of fixed assets over larger tonnage
- Scale benefits of larger equipment and supply contracts.
- Design based on optimized water quality, fish rearing and heating parameters
- Other improvement previously listed

Projected Cost

\$8/kg annual production

Acknowledgements

Financial Support

Tides Canada Upcountry Properties Group (Miracle Springs Inc.)

<u>Technical Support</u> K'udas LLP ('N<u>a</u>mgis First Nation), Kuterra Dr. Andrew Wright PRAqua Inc. Derk Enterprises