'N<u>a</u>mgis Closed Containment Atlantic Salmon Farm

Aquaculture Innovation Workshop November 2012

Garry Ullstrom Senior Financial Officer - 'N<u>a</u>m<u>g</u>is First Nation

Cathal Dinneen Operations Manager – K'udas Limited Partnership

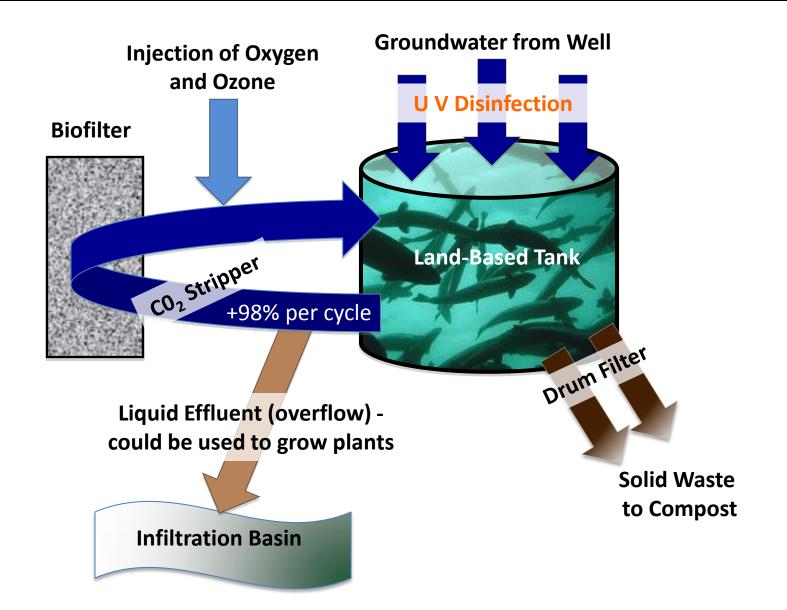
Eric Hobson President – The SOS Marine Conservation Foundation

People of the Salmon

Who's Involved?

TIDEScanada

uncommon solutions for the common good



Project Location

RAS Technology

Project Objectives

Confirm the biological and technical parameters for raising Atlantic salmon.

• Optimal temperature; fish density; salinity; water quality factors; feed conversion rates; successful grilse reduction strategies, etc.

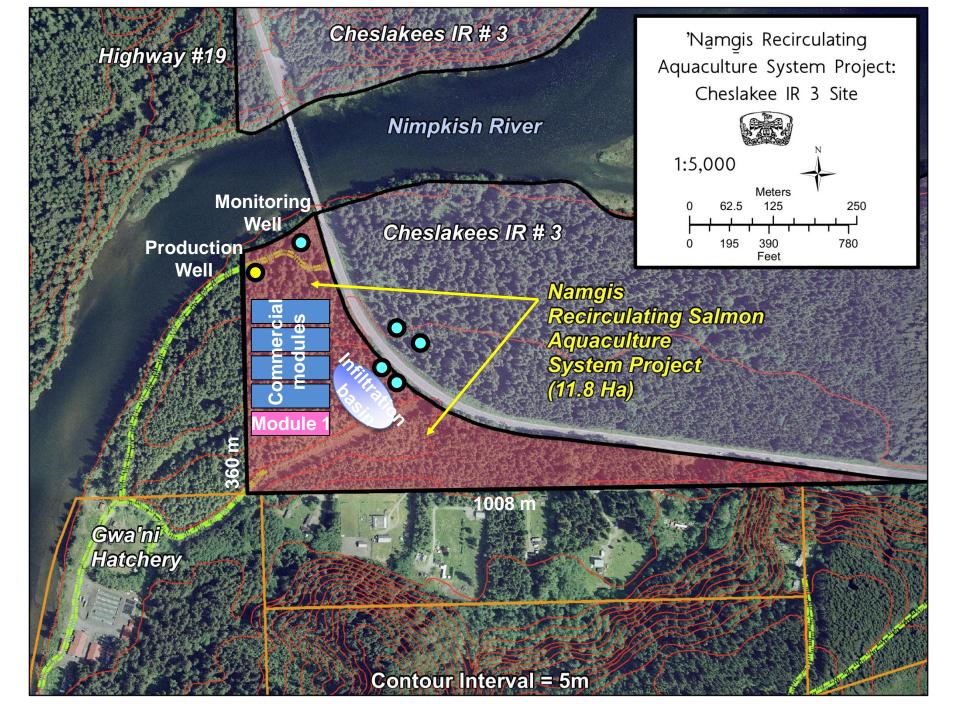
Project Objectives

Determine the optimal design and production parameters for a commercial sized facility.

- Optimal tank sizes and design; heating system size and design; use of denitrification to reduce effluent and heating costs; facility size re labour requirements;
- Confirmation of no environmental impacts and determination of how to best capitalize from the waste stream (aquaponics and/or fertilizers).


Project Objectives

- Determine the minimum site characteristics.
- Determine economic factors
 - Operating costs
 - Revenues



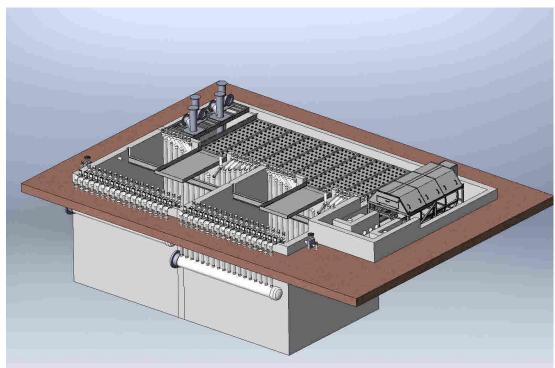
- Make a profit from Module One.
- Catalyze the adoption and improvement of this technology for growing Atlantic salmon.

Facility Layout

2,870 m² (35m x 82m; 116' x 270')

Project Timeline

- Construction complete December 2012
- Smolts into facility January 2013
- First harvest January 2014



Project site – September 18, 2012

Project site – November 1, 2012

Process Innovation

Below grade Fluidized Sand Bed RAS system

Above grade FSB RAS system

Future Innovation

- Introduce:
 - Denitrification
 - Chilling
 - Other operating innovations
- Turning waste into profits.
- Methods to reduce grilsing.
- Other design innovations to reduce capital costs.

Funding for Construction & Operations

Tides Canada	3,166,533
Sustainable Development Technology Canada	2,650,000
Department of Fisheries and Oceans – Aquaculture Innovation & Market Access Program	800,000
Aboriginal Affairs and Northern Development Canada	497,575
Coast Sustainability Trust	113,111
Ritchie Foundation	130,000
BC Hydro Power Smart	143,000
Total Grant Funding secured	7,500,219
'Namgis First Nation Investment (in addition to contribution of land)	1,000,000
Total Funding	\$ 8,500,219

Capital Costs of Pilot

		<u>\$ 8.81/lb</u>
Total Capital Costs	<u>\$ 7,557,497</u>	<u>\$19.38/kg</u> HOG
Other Equipment	<u>525,599</u>	<u>\$ 1.35/kg</u>
Site Develop. & Bldgs.	2,025,610	\$ 5.19/kg
RAS Equipment	\$ 5,006,288	\$12.84/kg HOG

470 Metric Tonnes of production per year live weight. 390 tonnes HOG per year.

Costs to First Harvest

Inventory Buildup:

Feed & Smolts\$LabourOther Prod'n CostsOther Prod'n CostsProcessing & MarketingPre-production salaries, etc.Pre-production salaries, etc.Administration & Overhead1,

Total Capital Costs

Total Costs to 1st Harvest

\$ 583,791 280,450 294,607 83,546 287,870 449,115 1,979,379 7,557,497

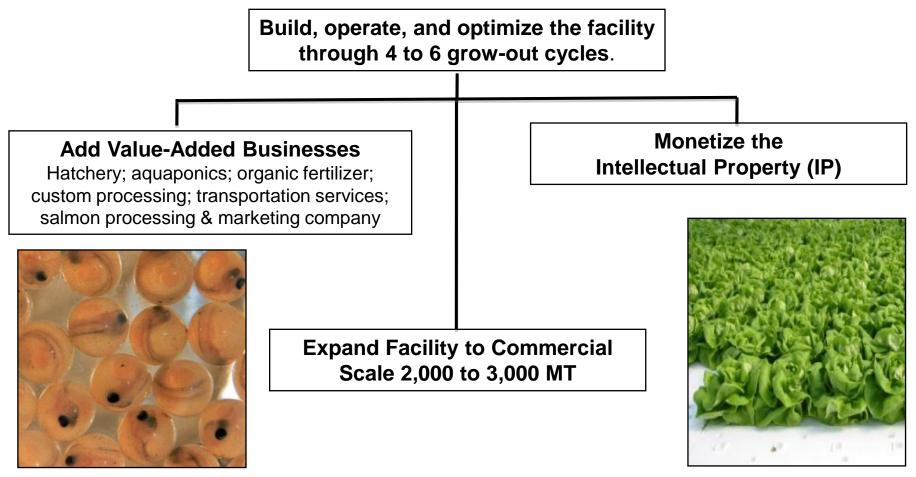
\$9,536,876

Capital Costs – Pilot vs. Commercial

	Cost Per	Cost Per Module (\$'000)		
	First Module	Commercial Scale		
Engineering	501	130		
RAS Equipment	2,477	2,200		
RAS Installation	2,029	1,500		
Civil Works	1,045	570		
Main Building	980	880		
Other Equip.	525	220		
Cost Per Module	7,557	5,500		
Permanent Inventory	1,979	7,200		
Hatchery		1,500		
Total Capital Cost	9,536	30,700		

Operating Expenses – Pilot vs. Commercial

Key Variables	First Module	First ModuleCommercial-Scale & Optimized\$/kg HOG% Improve	
	\$/kg H		
Feed	2.10	1.77	16%
Labour	0.75	0.45	40%
Power	0.31	0.28	10%
Smolts	0.85	0.64	25%
Maintenance	0.09	0.09	0%
Fish Health Treatments	0.30	0.27	10%
Other Operating	0.49	0.37	25%
Process, Pkg, Freight	0.78	0.70	10%
Marketing, Sales Adm.	0.51	0.46	10%
Corporate Overhead	0.050	0.045	10%
Total Production Costs	6.22	5.08	18%


Marketing and Sales

- Demand for seafood that meets ENGO sustainability ranking criteria is currently greater than the supply
- Strategic partnership with Albion Fisheries to process and market the product is currently being negotiated
- Branding program is under development
- Ensuring production method, including feed formulation and supply, meets Monterey Bay Aquarium's "SeaChoice" sustainability ranking criteria

Future Potential

The experience gained from Module 1 = significant economies of scale in capital and operating costs as additional modules are added.

Key Issues to Date

- Regulatory and permitting
- Engineering (design)
 - Heating
 - Structural
 - Energy efficiency
- Capital Costs
- Lender and investor lack of knowledge

- Bioplan
 - Density
 - Grilse rate
 - Grading and handling
- Marketing and sales
 - Processing
 - Pricing / quality premium
 - Market development

Contact Information

Garry Ullstrom

Senior Financial Officer, 'N<u>a</u>mgis First Nation garryu@namgis.bc.ca ; 250-974-5556 www.namgis.bc.ca - Project updates

Cathal Dinneen

Operations Manager <u>CathalD@namgis.bc.ca</u>; 250-974-8208

Eric Hobson

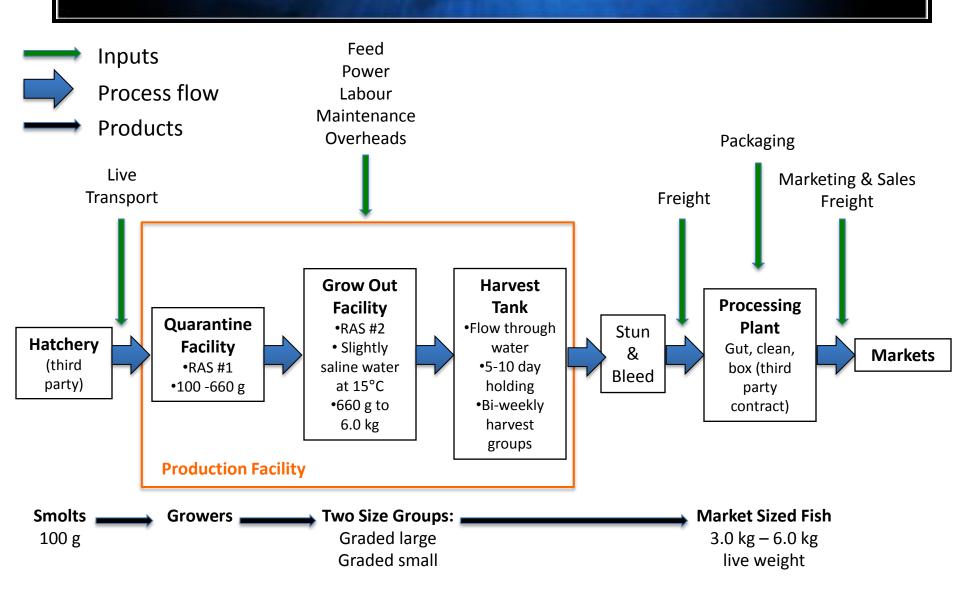
President, SOS Marine Conservation Foundation <u>eric@saveoursalmon.ca</u>; 250-230-7136 www.saveoursalmon.ca

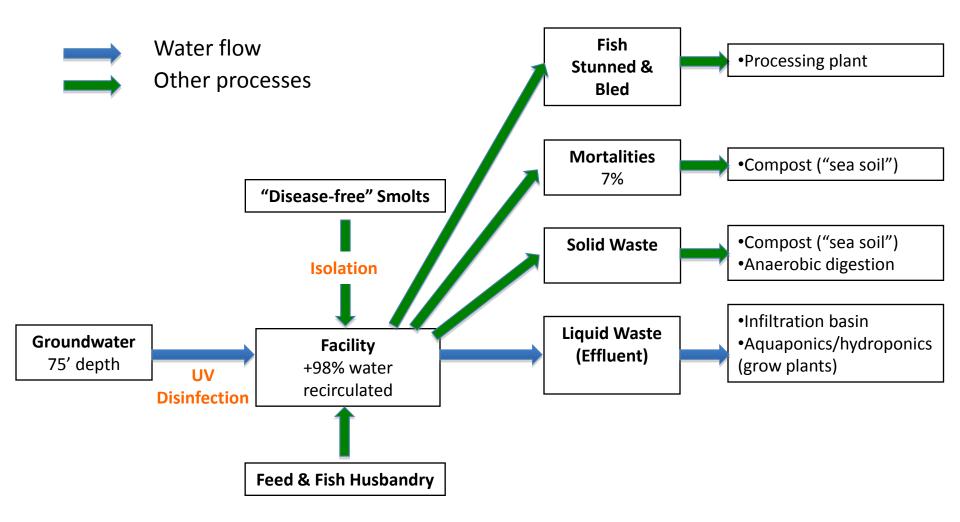
Slides With More Detailed Information

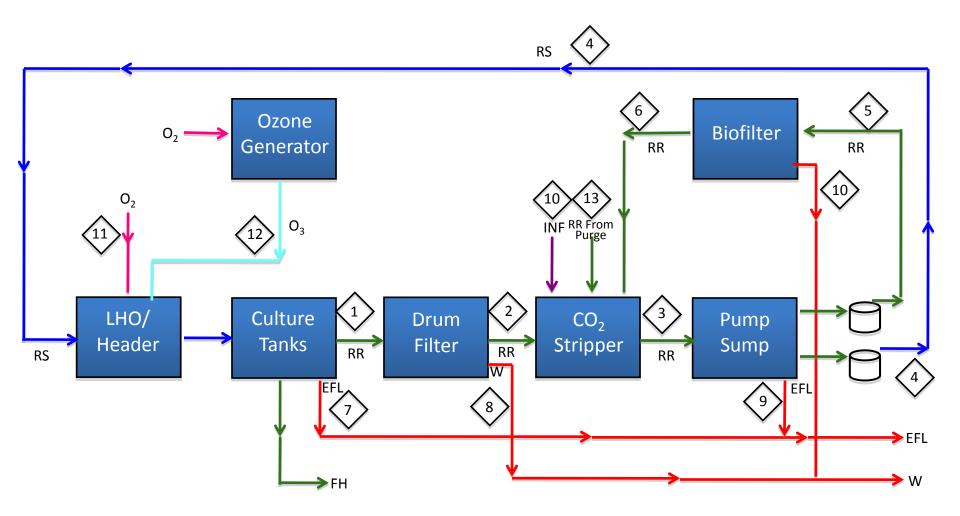
Who's Involved?

- 'Namgis First Nation 100% owner (K'udas GP Inc.).
- The SOS Marine Conservation Foundation (Save Our Salmon) Project Partner providing funding and business expertise.
- **Tides Canada** with the support of the **Freshwater Institute**, provides funding, technical and project management support.
- **PR Aqua** Aquaculture system supplier.

TIDEScanada


uncommon solutions for the common good





Process Flow

Input and Outputs

Project Overview

- Module 1 of a 5 module farm;
- Covered, biosecure facility
- +98% recirculation rate ٠
- Groundwater disinfected on entry
- Slightly saline water at 15° C ٠
- 3 cohorts of Atlantic salmon smolts/year ۲
- Target density = 90 kg/m^3 ۲

- Smolts from Canadian broodstock, "disease free", will undergo rigorous third-۲ party additional disease testing and be guarantined for 4 months
- Module 1 = 470 tonnes/year ٠
- Growout in 12 -15 months; no use of antibiotics or pesticides
- Harvest sizes 3 to 6 kg; continuous supply ۲
- Capital cost \$7 million
- Independent environmental monitoring through PSF funded by Tides Canada ۲

Key Site Characteristics

- Ample supply of fresh and brackish groundwater
- Three phase power nearby
- Soil characteristics good for infiltration basin
- Adjacent to Island Highway
- Within 5 km of Port McNeill
- Close to processing plant and composting facility
- Room for expansion

Technologies & Equipment Summary

- Facility housed within 1 building divided into 2 sections: quarantine & growout
- Water supplied from ground + UV disinfection
- Tanks: 5 @ 500m³; 2 @250m³; fiberglass; dual drain Cornell style
- **Biofilter:** PRAqua fluidized sand biofilter, below grade installation
- **Gas exchange:** Tank LHO's & CO₂ stripping tower
- Feeding: Central feeding system (pneumatic)
- Inventory control: Electronic counting at transfer (e.g. Aquascan), bio-scanner frame weight monitoring
- Fish transfer: Central pump & grading station
- **Particulate filtration:** Microscreen drum filter (80micron)
- Heating system: Heat pump (1 to start) using groundwater as heat source and culture tank based heating coils as destination; Energy Recovery Ventilator (ERV) used to recover heat from vented air
- Head: 16 feet
- Fish harvest: Purge tank

Bio-Programming Facts

- Smolt entry at 100 g
- Smolts quarantined for 4 months
- 3 crops/year
- Thermal Growth Coefficient of 2.5
- Slightly saline water at 15° C
- 6 kg target size
- Harvest every two weeks
- Incorporate overstocking and early harvest
- Up to 2 week depuration period
- Initial design density of 50 kg/m³ increasing to 90 kg/m³
- 470 MT production

RAS Performance Metrics (Projected)

Water flow:

- Makeup water flushing:
 - Per unit system volume 150 gpm; 25% of system volume/day
 - Per recirculating flow basis 99.5% recirculation rate
- Culture tank exchange rate at different stages:
 - Growout 30 min
 - Quarantine 45 min
 - Purge 45 min

RAS Performance Metrics (Projected)

In tank water quality targets*:

- Temperature 15°C average
- Salinity 6 to 8 ppt (influent water supply)
- Alkalinity 75 mg/l min (controlled with NaOH)
- CO₂ 12 mg/l max
- Oxygen 100%

Biological Metrics (Projected)

- Smolt size 100 g (supplied by third party)
- Maximum Density 50 (1st cohort), 75 (2nd cohort), 90 (3rd cohort) kg/m³
- FCRb 1.05
- TGC 2.5
- Mortality- 7.6% (including 3% cull)
- Harvest size 3 to 6 kg
- No antibiotics nor pesticides will be used

Process Innovation

Two process loop strategy

- Matches flow rates to the requirements of the individual processes
- Reduced flow and power use when demand allows without affecting flow dependent processes

Two passes through CO₂ stripper

Allows for a significant reduction in system dissolved CO₂ concentrations and reduced flow rates

Process Innovation

Equipment is low profile

- Lower profile building with reduced air volume
 = reduced energy for air handling and heating
- Easy access to equipment without stairs or elevated platforms
 = reduced labour

Use of low head oxygenation technologies

 Allows for the use of low cost, low pressure generated O₂ without the risk of elevating total dissolved gases

Oxygen control on a tank-by-tank basis

• Improved efficiency of oxygen use = lower operations cost