THE CONSERVATION FUND

America's Partner in Conservation

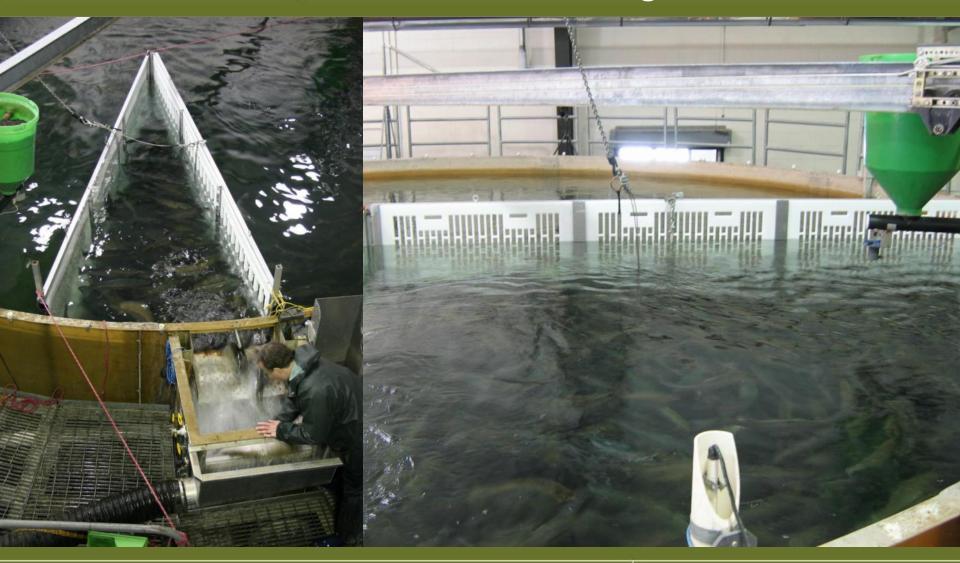
Effects of water exchange rate and biofiltration on circulating hormones in water recirculation aquaculture systems containing sexually maturing Atlantic salmon

Good C, Davidson J, Earley R, Weber G, & Summerfelt S

Aquaculture Innovation
Workshop #5
Shepherdstown WV - Sept 2013

Research at The Freshwater Institute

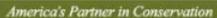
Closed Containment Facilities with Water Recirculation

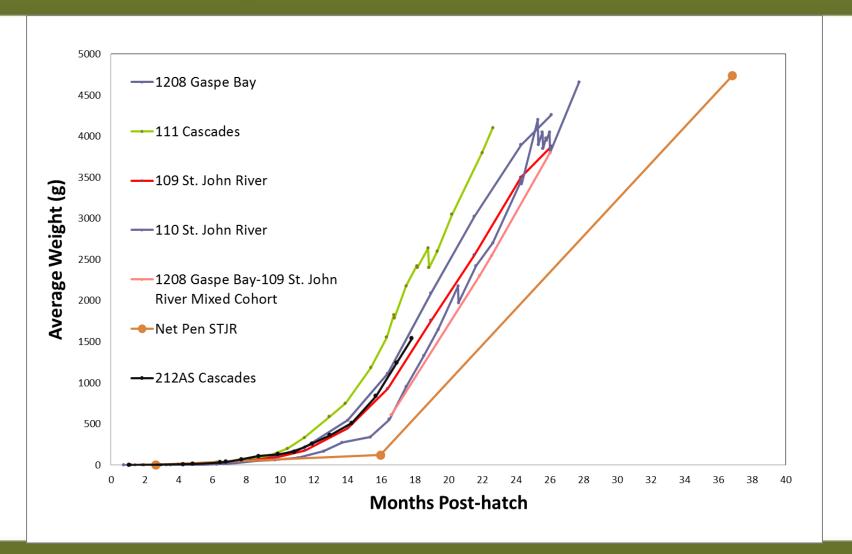


Aquaculture Innovation
Workshop #5
Shepherdstown WV - Sept 2013

THE CONSERVATION FUND

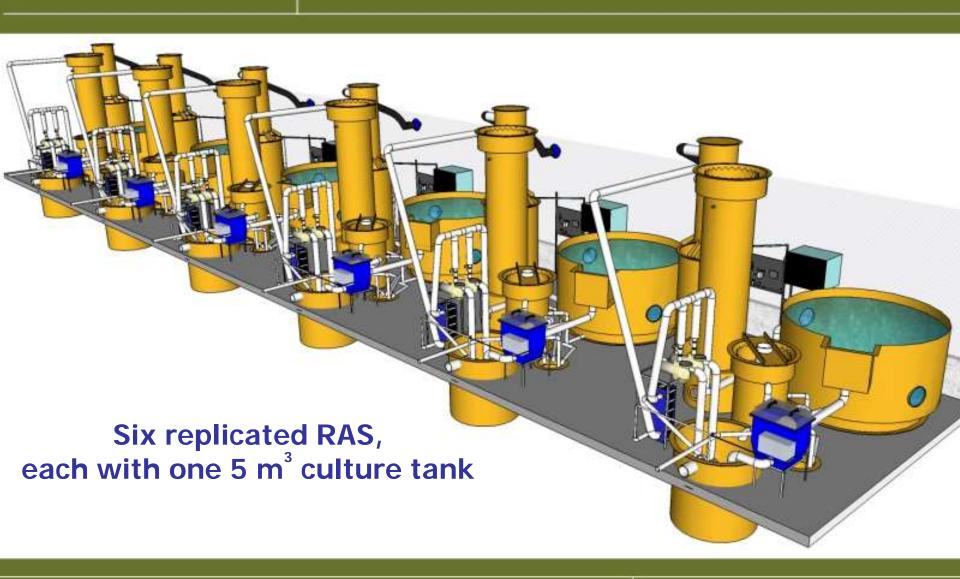
America's Partner in Conservation

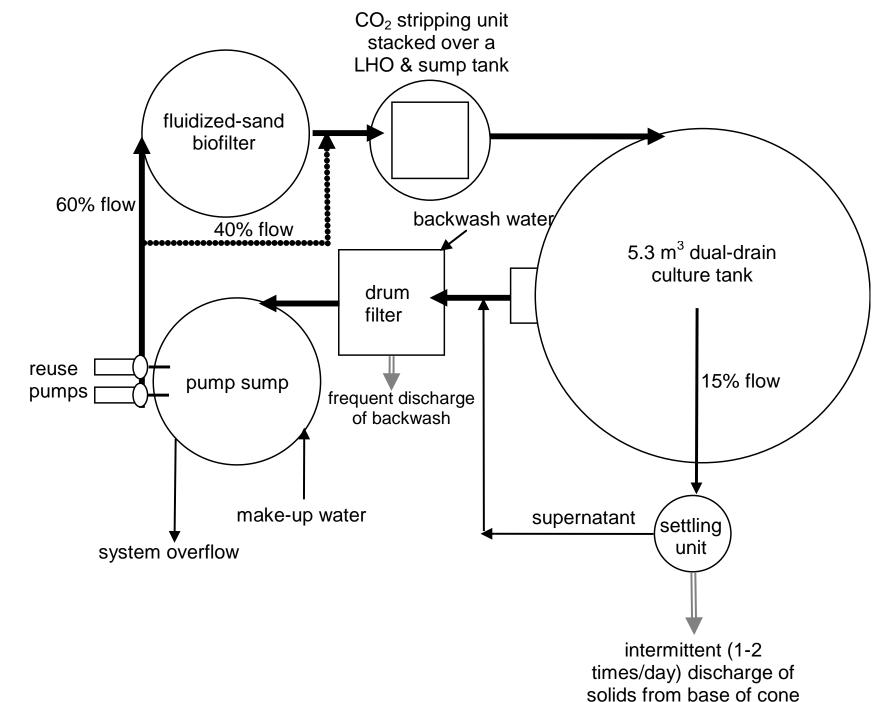

Background: Atlantic salmon growout trials



Aquaculture Innovation Workshop #5 Shepherdstown WV - Sept 2013

Background: Atlantic salmon growout trials


America's Partner in Conservation


Main Reuse System Freshwater Institute

Replicated RAS

Background: Atlantic salmon growout trials

Precocious maturation

- 80% of male salmon matured early
- 40% of all fish removed as early maturing males
- approximately half at 2 kg and half at 3.5 kg

Maturation in Atlantic salmon

Sexual maturation in *S. salar*:

A highly flexible process, influenced by

- Photoperiod
- Water temperature
- Feed intake
- Nutrition
- Lipid reserves
- Growth rate
- Stock genetics
- Etc.

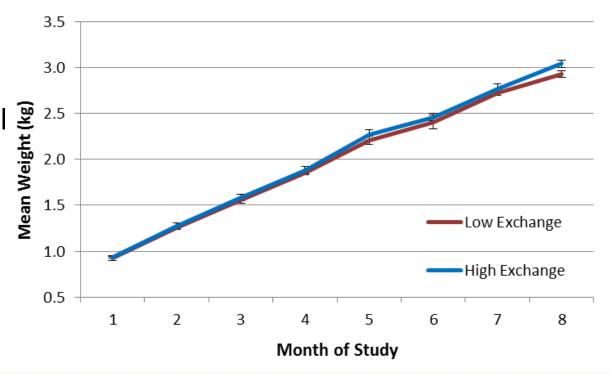
Accumulation of steroid hormones?

High Makeup H₂O Exchange (2.6%)

Low Makeup H₂O Exchange (0.26%)

- Recirculating System (9.5 m³)
- 5.3 m³ Dual-drain tank
- Radial flow settler
- Drum filter (60 µm screens)
- Pump sump
- 1-HP centrifugal pump
- Heat Exchanger
- Fluidized Sand Biofilter
- Low Head Oxygenator (LHO)
- CO₂ Stripping Column

➤ High vs. Low Water Exchange Rates – 3 RAS per treatment


	Low Water Exchange	High Water Exchange
Flushing Rates (% of Recycled Flow)	0.25	2.60
Feed Loading Rate (kg feed/m³ makeup water/ day)	1.3	0.13
Hydraulic Retention Time (days)	7.0	0.7

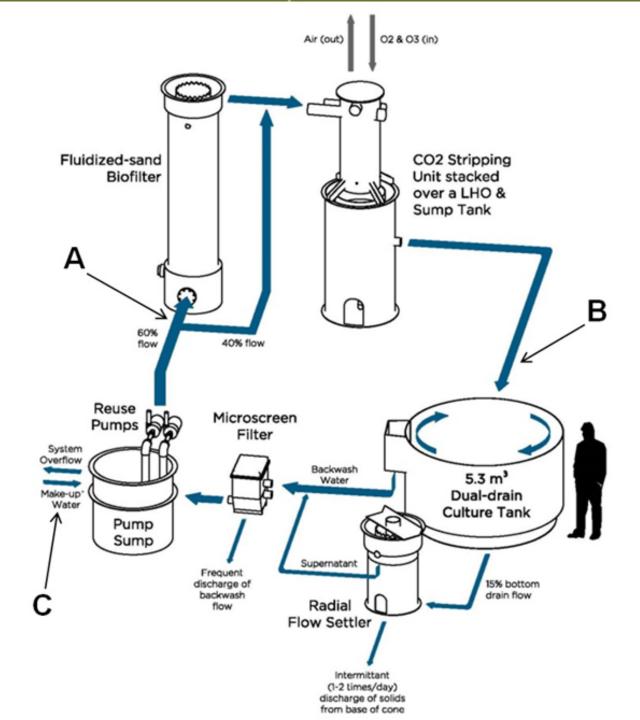
Parameter (mg/L)	Exchange	Exchange
Temperature °C	15.0 ± 0.0	14.9 ± 0.0
Dissolved Oxygen	10.3 ± 0.1	10.3 ± 0.0
Carbon Dioxide	9 ± 1	9 ± 1

Lliab

- > Atlantic salmon were stocked at 0.93 ± 0.01 kg to begin
- ➤ No significant difference in mean weight throughout the study
- Slight separation in growth curves but difference not statistical
- > End Mean weight
 - High Exchange
 3.04 ± 0.04 kg
 - Low Exchange
 2.93 ± 0.04 kg

Parameter (mg/L)	High Exchange	Low Exchange
Thermal Growth Coefficient	1.45 ± 0.02	1.40 ± 0.02
FCR	1.03 ± 0.02	1.16 ± 0.13
Survival	> 99%	>99%

Very high prevalence of apparently mature males and females by study's end (24-months post-hatch)



- Photoperiod?
- Rapid growth?
- Water temperature?
- Freshwater environment?
- Accumulating steroid hormones? testable

Separate Study: Hormone measurements from water samples

Objectives:

- Determine whether important hormones accumulate in RAS relative to exchange rate, and whether this is associated with increased early maturation
- Determine the effects of treatment processes on hormone concentrations
- Target hormones: testosterone, 11-KT, estradiol, progesterone, cortisol

Triplicate water samples collected from each RAS:

A – pre-water treatment processes

B – post-water treatment processes

C – makeup water influent

EIA quantification

Results

		Water sample location		
However	Exchange	Pre-Treatment	Post-Treatment	Makeup influent
Hormone	rate	(A)	(B)	(C)
Testestavana	l li ab		440 7 · 00 00 a	4007.70400
Testosterone	High	518.7 ± 118.0 ab	443.7 ± 86.32 ^a	123.7 ± 7.313 °
	Low	768.4 ± 88.88 ^d	758.5 ± 155.5 ^{bd}	124.0 ± 45.24 ^c
11-KT	High	194.5 ± 21.19 a	127.9 ± 11.08 ^b	4.783 ± 0.390 °
	Low	183.0 ± 17.73 a	124.7 ± 11.90 ^b	4.526 ± 1.008 °
Estradiol	High	168.7 ± 61.80 a	168.8 ± 66.25 a	39.55 ± 6.341 b
	Low	223.5 ± 28.53 a	239.8 ± 20.69 a	38.92 ± 25.06 b

No differences in measured concentration for cortisol or progesterone

Results

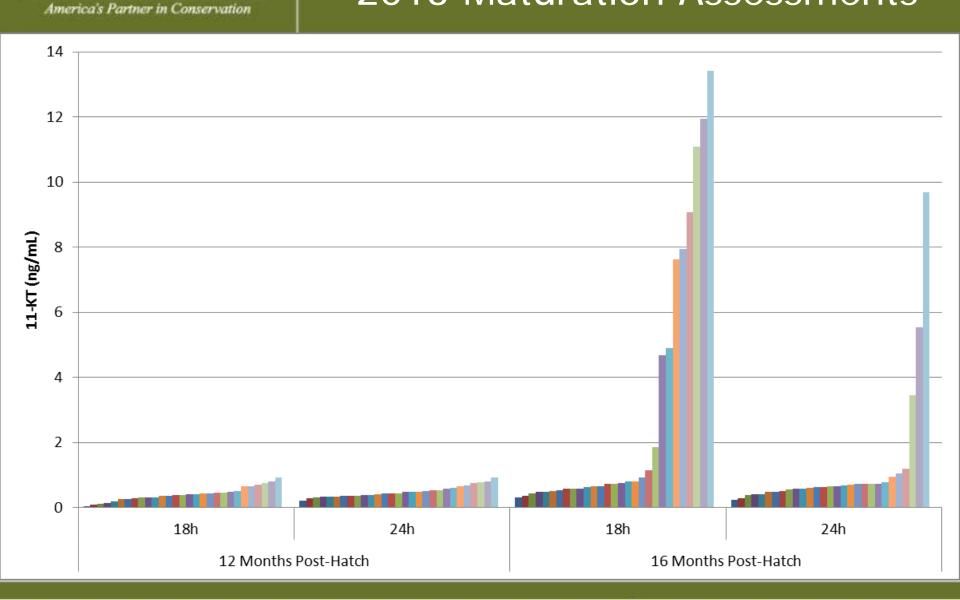
		<u>RAS</u>	
	Sex	High exchange	Low exchange
Visual signs of maturity (%)	M	75.6 ± 13.7 ^a	67.8 ± 8.07 ^a
(n=357)	F	11.3 ± 3.27 ^a	3.23 ± 1.47 b
Gonadosomatic index	M	6.79 ± 0.30 ^a	5.94 ± 0.79 ^a
(n=24)	F	3.06 ± 1.38 a	5.24 ± 4.97 ^a

- Testosterone the only measured hormone significantly accumulating in RAS relative to exchange rate
- 11-KT the only measured hormone to be significantly reduced across the water treatment processes
- Testosterone, 11-KT, and estradiol sig.
 higher in RAS compared to makeup water
- Mature male % unrelated to exchange rate

Controlled studies incorporating:

- Water sampling at multiple time points
- More sampling locations throughout the RAS
- Plasma hormones assessments for water sampling validation
- Increased GSI sampling
- Other physiological assessments in parallel, e.g. vitellogenin, MIH, etc.

2013 Maturation Assessments


Photoperiod effect?

Two treatment groups:

- 24-hour photoperiod
- 18h:6h photoperiod

2013 Maturation Assessments

2013 Maturation Assessments

- Mature males at 16 months:
 - -18h:6h = 23%
 - -24h = 10%
- GSI vs 11-KT:
 - 18h:6h correlation coefficient = 0.1808 (p=0.3538)
 - 24h correlation coefficient = 0.4613 (p=0.0103)

- No evidence that 18h:6h photoperiod reduces early male maturation
- Further sampling at ~2.5 kg and final harvest (4-6 kg)

Acknowledgements

- ➤ All research supported by the Agriculture Research Service of the United States Department of Agriculture, under Agreement No. 59-1930-5-510.
- Opinions, conclusions, and recommendations are of the authors and do not necessarily reflect the view of the USDA.
- ➤ All experimental protocols were in compliance with Animal Welfare Act (9CFR) and have been approved by the Freshwater Institute Animal Care and Use Committee.
- Special thanks to Karen Schroyer, Christine Marshall, Susan Glenn, Susan Clements for water quality analysis and technical assistance.