
America's Partner in Conservation

Recent Research on the Effects of NO₃-N, CO₂, O₂ x Swimming Speed, and Strain x Photoperiod on Salmonid Performance, Health, and Welfare

Good, C., Davidson, J., Waldrop, T., Welsh, C., Snekvik, K., Terjesen, B., Summerfelt, S.

Research at The Freshwater Institute

America's Partner in Conservation

Closed Containment Facilities with Water Recirculation

Recent Research at The Freshwater Institute

Atlantic salmon *Salmo salar* growout in freshwater closed-containment systems:

(1) effects of strain and photoperiod manipulation

(2) effects of high and low dissolved carbon dioxide

(3) effects of swimming speed and dissolved oxygen

Current Research at The Freshwater Institute

Rainbow trout *Oncorhynchus mykiss* in freshwater closed-containment systems:

Effects of high vs. low NO₃-N

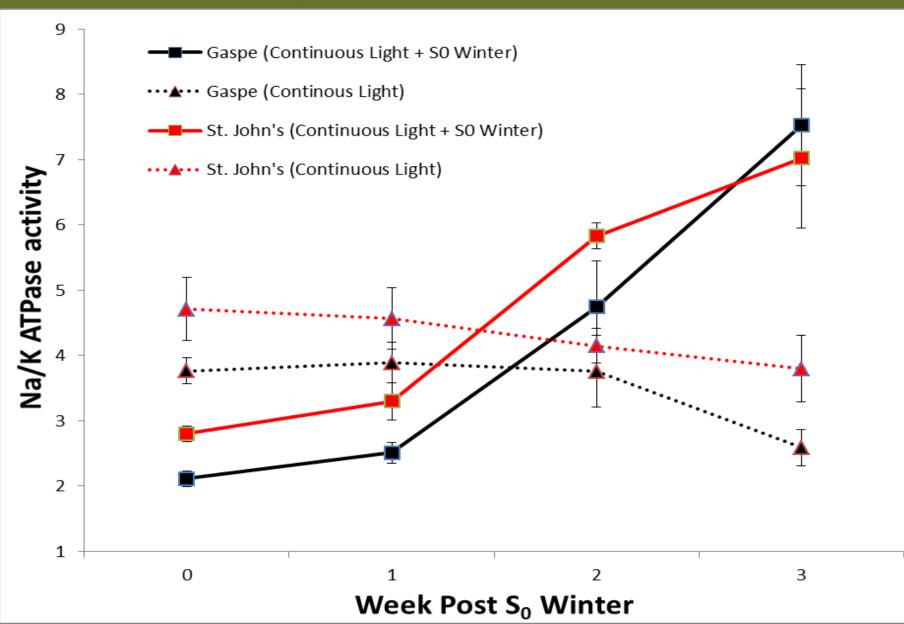
America's Partner in Conservation

Current Research at The Freshwater Institute

STUDY 1

Effects of strain and photoperiod manipulation on Atlantic salmon

Objectives


 Determine how Atlantic salmon strain and photoperiod manipulation (to produce smoltification) influence growth, processing attributes, and sexual maturity to 26 months post-hatch in <u>freshwater</u> RAS.

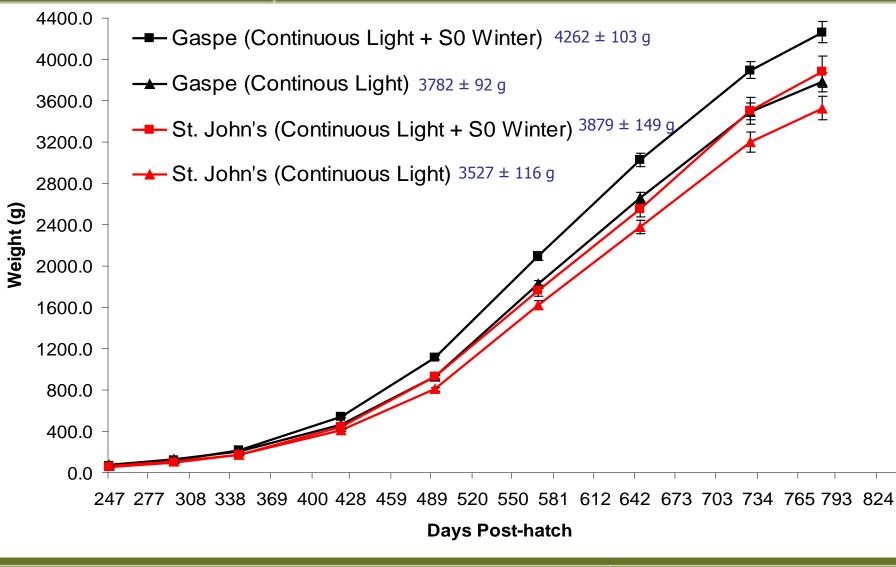
Materials and Methods

- 2X2 Factorial study
- Two Atlantic salmon strains:
 - 1. St. John's
 - 2. Gaspe
- Two early rearing light regimes:
 - 1. Continuous light
 - 2. Continuous light with S₀ winter
 - 12h light, 12h dark for six weeks, then return to constant light

America's Partner in Conservation

Seawater Challenge Post-Photoperiod Manipulation

America's Partner in Conservation

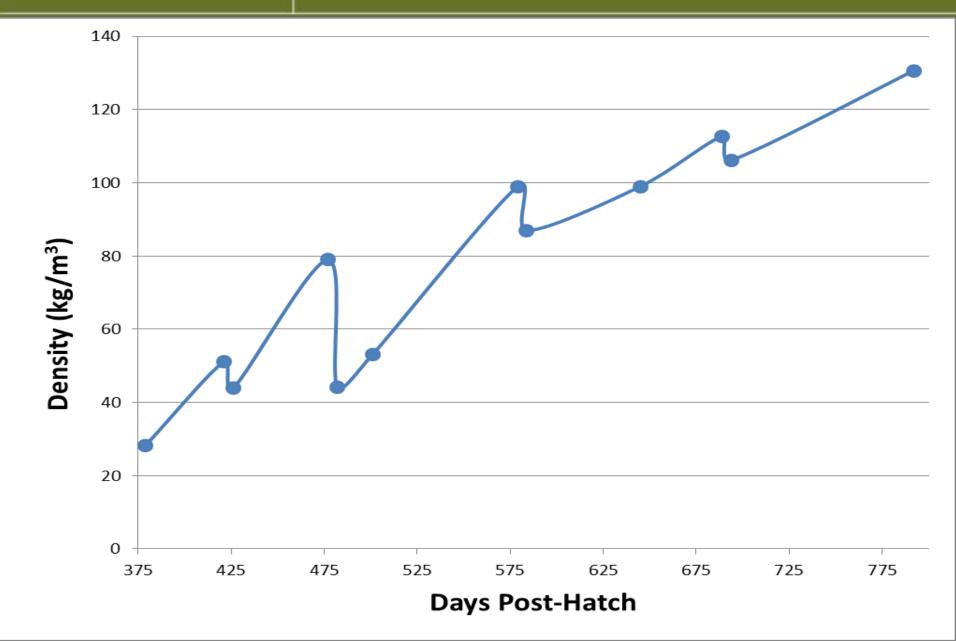

Three 10 m³ culture tanks in one freshwater reuse system
 Both strains and photoperiod treatment fish co-mingled within each tank for n=3 replication

<u>Results</u>

- Good overall feed conversion throughout study – 1.05 with 40:30 diet
- Overall survival >95%
- No vaccinations or treatments necessary, aside from occasional salt to control fungus
- Gaspe strain outperformed St. John's at 26 months post-hatch

America's Partner in Conservation

Mean Fish Weight to 26 months


	Gaspe		<u>St. John's</u>	
Variable	S0 Winter	Constant	S0 Winter	Constant
Weight (g) ***	4262 ± 103	3782 ± 91.8	3879 ±149	3527 ± 116
Head-on Gutted Yield (%)†	89.8 ± 0.4	88.5 ± 0.3	87.8 ± 0.5	88.3 ± 0.5
Fillet Moisture (%)†	62.7 ± 0.7	62.2 ± 0.7	67.1 ± 0.7	64.9 ± 0.7
Fillet Fat (%)***	17.2 ± 0.8	17.8 ± 0.9	11.7 ± 0.8	14.4 ± 0.8
Fillet Protein (%) ***	19.7 ± 0.1	19.7 ± 0.2	20.9 \pm 0.2	20.2 ± 0.2
Fillet Ash (%)	1.38 ± 0.06	1.40 ± 0.03	1.46 ± 0.03	$1.40 \hspace{0.1 cm} \pm \hspace{0.1 cm} 0.05$
Viscera Index (%)	8.72 ± 0.6	9.51 ± 0.3	8.42 ± 0.7	8.43 ± 0.5

† Significantly (p<0.05) different between strains

*** Significantly (p<0.05) different between both strain and photoperiod treatment

America's Partner in Conservation

Mean Density to 26 months

America's Partner in Conservation

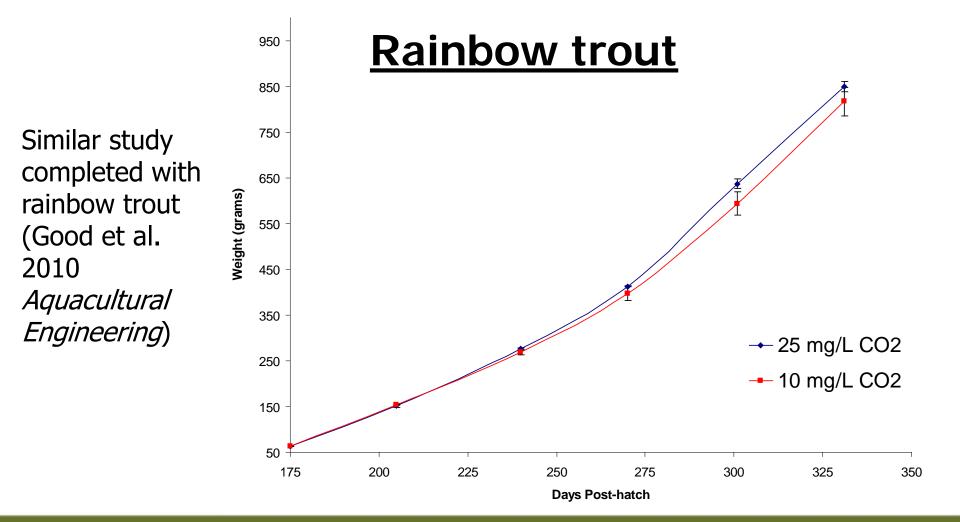
Current Research at The Freshwater Institute

STUDY 2

Long-term effects of high (20 mg/L) vs. low (10 mg/L) CO₂ exposure on Atlantic salmon

- America's Partner in Conservation
 - Salmonids produce 0.96 1.10 g CO₂ per gram of O₂ consumed
 - Inverse relationship of CO₂ with pH
 - Long-term exposure to elevated CO₂
 - Decreased hemoglobin oxygen binding capacity (Bohr effect)
 - Increased ventilation, elevated blood pressure
 - Reduced growth rate
 - Higher FCR
 - Nephrocalcinosis
 - Also, increased solubility of toxic metals at lower water pH

- Growth of salmonids significantly reduced at ≥30 mg CO₂ / L
- Maximum limit < 20 mg CO₂ / L
 - Recent review suggests 10 mg CO $_2$ / L max for Atlantic salmon


Aside from fish health implications....

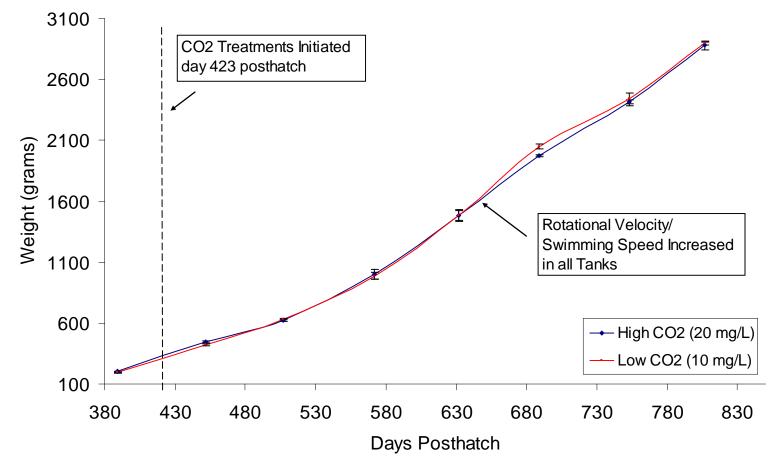
Economic Considerations

- Decreasing tank CO₂ concentrations requires pumping more water flow & installing a larger stripping unit (cascade column or aerated basin)
 - increases fixed costs
 - increases variable costs to pump water

America's Partner in Conservation

Background: Dissolved CO₂

America's Partner in Conservation



Atlantic salmon growout in freshwater:

- Six replicated RAS

- 3 with 20 mg/L CO₂
- 3 with 10 mg/L CO_2
- Alkalinity > 200 mg/L
- 100% DO saturation

Equal salmon growth at 10 and 20 mg/L of CO₂

America's Partner in Conservation

Final weight (g) @ 807 days post-hatch

High CO_2 : **2879** ± 35

Low CO₂: **2896** ± 12

<u>Mean survival (%)</u>

High CO_2 : 99.2 ± 0.3 Low CO_2 : 99.1 ± 0.3

Culls due to fungus (%)

High CO_2 : 3.75 ± 1.05

Low CO_2 : 3.41 ± 1.27

* approx. 3400 lbs of salt added to each system during study to control fungus

Feed conversion ratio

High CO₂: 1.02 ± 0.03 Low CO₂: 1.03 ± 0.02

Whole blood analyses

- High CO₂ group:
 - Higher pCO₂, HCO₃⁻, pH
 - No change in pO₂, sO₂, or cardiosomatic indices
- No nephrocalcinosis observed

Current Research at The Freshwater Institute

STUDY 3

Effects of swimming speed (2 BL/s vs. 0.5 BL/s) and dissolved oxygen (100% vs. 70% saturation) on Atlantic salmon

America's Partner in Conservation

Swimming Speed

 Published research on salmonids suggests prolonged exercise leads to:

Increased growth
Better feed conversion
Less size variation at harvest
Improved disease resistance

Reduced aggressive behavior
Improved flesh texture
Increased oxygen consumption

- Can become limiting as production levels, feeding, and biomass increases
- Low dissolved oxygen can lead to:
 - Slower growth
 - Poor feed conversion
 - Increased disease
 - Decreased swimming fitness

- Recommended for salmonid aquaculture:
 - -0.5-2.0 Body-lengths/s swimming speed
 - 100% oxygen saturation
- Difficult to achieve in raceways; relatively straightforward in circular tanks
- Plenty of research on exercise and DO, but little work in assessing these parameters in combination

2X2 Factorial Study Design

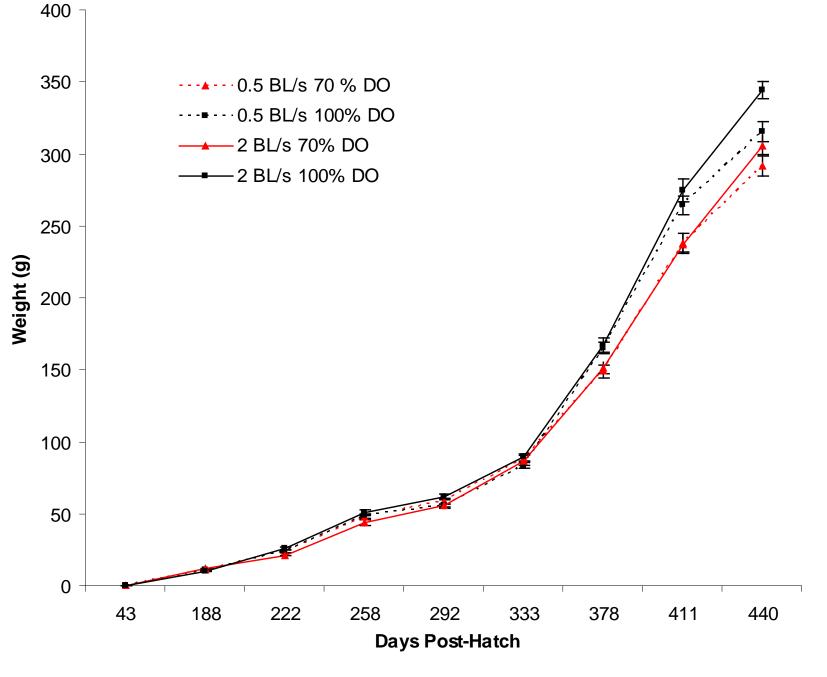
Two swimming speeds:

<0.5 (BL/s)

1.5-2 (BL/s)

Two dissolved oxygen levels:


High: 100% saturation


Low: 70% saturation

America's Partner in Conservation

Materials and Methods

		DO 100% saturation			DO 70% saturation				
		2 BI	_/s	0.5 E	BL/s		2 BL/s	0.5 BL/s	
We	eight (g)	344.3	± 6.3	315.8	± 7.5	306.	0 ± 6.8	7 292.2 ± 6.9)
	Treatme	nt				df	F	p-value	
Swimming speed			1	9.86	0.0018				
Dissolved oxygen			1	18.95	<0.0001				
	Swimmir	ng speed	l X disso	olved ox	ygen	1	1.35	0.2451	

Precocious Males: 2 BL/sec : 6.4% < 0.5 BL/sec: 11.5%

Logistic regression model reporting odds ratios for the probability of precocious males within each treatment group:

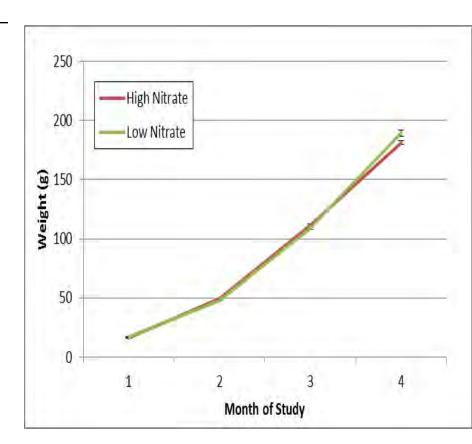
Treatment	Odds ratio	(95% conf. int.)	p-value
0.5 BL/s	1.896	(1.121, 3.208)	0.017
70% DO	0.945	(0.546, 1.636)	0.839

Additional assessments:

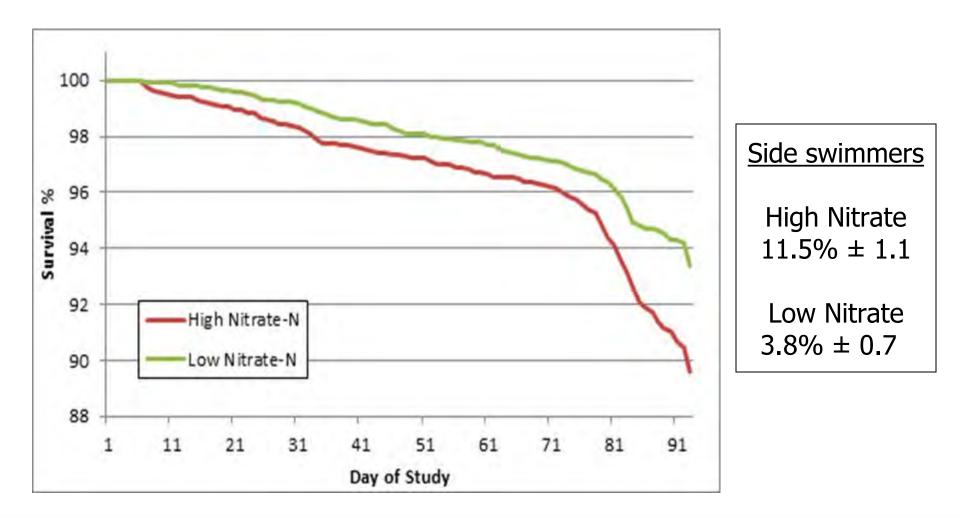
- Cardiosomatic index higher in high DO group (p=0.059)
- No difference in visceral index

America's Partner in Conservation

Current Research at The Freshwater Institute


Aquaculture Innovation Workshop, Campbell River, BC Sept 26-27, 2011

Rainbow Trout


Effects of High vs. Low NO₃-N

America's Partner in Conservation

	High Nitrate	Low Nitrate
TAN	0.38 ± 0.02	0.35 ± 0.00
NH ₃	0.003 ± 0.000	0.003 ± 0.000
NO ₂ -N	0.08 ± 0.01	0.02 ± 0.00
NO ₃ -N	89 ± 0	29 ± 0
Alkalinity	195 ± 0	195 ± 0
рН	7.58 ± 0.01	7.59 ± 0.01
Hardness	307 ± 2	306 ± 1
CO ₂	13 ± 0	13 ± 0
cBOD ₅	4.6 ± 0.9	3.2 ± 0.2
True Color	25 ± 1	22 ± 0
UV Transm. (%)	77 ± 1	81 ± 0
Sulfate	36 ± 0	257 ± 2
TSS	6.2 ± 1.1	4.0 ± 0.6
Temperature (°C)	15.4 ± 0.0	15.3 ± 0.0
DO	10.1 ± 0.0	10.1 ± 0.0
Conductivity	1184 ± 7	1176 ± 5

America's Partner in Conservation

Acknowledgements

Nick Zacharias, Phil Backover, Lauren Jescovitch, Tre Kidwell

All research was supported by the Agriculture Research Service of the United States Department of Agriculture, under Agreement No. 59-1930-5-510.

Opinions, conclusions, and recommendations are of the authors and do not necessarily reflect the view of the USDA.

All experimental protocols involving live animals were in compliance with Animal Welfare Act (9CFR) and have been approved by the Freshwater Institute Animal Care and Use Committee.