Aquaculture Innovation Workshop Oct 14-15 2015 Shephardstown

# Commercial application of denitrification in RAS

Ir. Victor Bierbooms
Viqon Water Solutions
The Netherlands



Project: ZON Aquafarming, Realization of market driven sustainable

aquaculture production chain

Company: FISHION, job function RAS, R&D, design and realization

Period: 1996-2010

Location: southern part of the Netherlands, rural area

Fish: Tilapia

Farm size: 700 ton annual production

Production goal: 10.000 ton annual production

#### PROJECT STRUCTURE ZON

MARKET DEMAND



#### **FISHION AQUACULTURE**

- fingerlings
- RAS technique
- Farming support
- Production coordination



#### **FARMERS**

Contract farming, volume and price/kg was agreed on every year



#### **FISHION PROCESSING**

- Processing Fish
- Packing
- Sales





## General RAS design

- low head design (total head loss 90 cm)
- energy 150 kW
- output 700 ton Tilapia 750 g





### Set-up RAS











#### WATER BALANCE RESTRICTIONS

Expected water usage 700 ton tilapia farm 25 m3/hour



Well/discharge regulation, max. 10-15 m3/hour



Denitrification (manure as C-source)



## Set-up DENOX system





## Denitrification







#### SPECS SYSTEM RAS 700 ton Tilapia

| RAS                            |      |
|--------------------------------|------|
| Recirculating flow (m3/hour)   | 6400 |
| Average feeding level (kg/day) | 2400 |
| make up water (m3/day)         | 120  |
| COD level (mg/l)               | 250  |
| ortho-P                        | 60   |
| NO3 level (mg/l)               | 830  |

| DENOX                                  |     |
|----------------------------------------|-----|
| capacity (m3/hour)                     | 20  |
| Denitrification volume (m3)            | 135 |
| Oxidation volume (m3)                  | 90  |
| Dry matter content active sludge (g/l) | 6   |
| NO3-N removal (g NO3-N/kg dm/hour)     | 2,3 |
| NO3-N removal (mg NO3-N/I/hour)        | 14  |

#### WATER QUALITY

| Influent denitrification               |      |
|----------------------------------------|------|
|                                        |      |
| volume spray water drumfilter (m3/day) | 480  |
| Dry matter content (g/l)               | 2    |
| COD level (mg/l)                       | 1700 |
| Ortho-P (mg/l)                         | 60   |
| NO3 (mg/l)                             | 830  |

| Effluent denitrification |     |
|--------------------------|-----|
|                          |     |
|                          |     |
|                          |     |
| Dry matter content (g/l) | 0   |
| COD level (mg/l)         | 250 |
| Ortho-P (mg/l)           | 40  |
| NO3 (mg/l)               | 380 |



## NO3 balance 700 Ton Tilapia farm with integrated DENOX system





#### NO DENOX, water balance costs Euro 0,23 Euro/kg production (maritime climate)





#### DENOX, water balance costs 0,17 Euro/kg production (maritime climate)





#### Water quality balance 700 Ton Tilapia farm after 2 years of production using denox system

| Year                      | 2007 | 2008 | 2009 |
|---------------------------|------|------|------|
| Feeding level (kg/day)    | 1200 | 2400 | 2400 |
| рН                        | 8    | 5,8  | 5,9  |
| NH4 (mg/l)                | 1,6  | 2    | 5    |
| NO2 (mg/l)                | 0    | 0    | 1    |
| NO3 (mg/l)                | 5    | 800  | 830  |
| COD (mg/l)                | 24   | 160  | 250  |
| ortho-PO4 (mg/l)          | 5    | 50   | 60   |
| salinity (%)              | 0,05 | 0,08 | 0,19 |
| alkalinity <sup>0</sup> d | 6    | 0,3  | 0,5  |
| Fe2+ (mg/l)               | 0,02 | 1,3  | 1,6  |



## Growth curve Tilapia

-Farm producing on fastest growth curve





## Cost price comparison of 700 ton Tilapia RAS production unit with/without denox

|                               | NO DENOX | DENOX  |
|-------------------------------|----------|--------|
| Cost price Tilapia (Euro/kg)  | € 2,34   | € 2,27 |
| juveniles                     | € 0,05   | € 0,05 |
| feed                          | € 0,90   | € 0,90 |
| water intake/discharge/sludge | € 0,14   | € 0,08 |
| heating                       | € 0,09   | € 0,01 |
| electricity                   | € 0,19   | € 0,21 |
| labour                        | € 0,14   | € 0,15 |
| other                         | € 0,10   | € 0,11 |
| insurance                     | € 0,10   | € 0,10 |
| finance                       | € 0,63   | € 0,66 |



#### Findings ZON aquafarming project

- 1) application of manure based denitrification in large scale Tilapia farming is feasible
- 2) denitrification reduces sludge volume with 30-35%
- 2) water usage of 40-50 l/kg feed is possible for efficient Tilapia production
- 3) no effect of denitrification on fish quality/flavor and growth
- 4) Ortho Phosphate level > 150 mg/l gives soap like flavor to fish
- 5) dissolved air flotation unit removes COD and PO<sub>4</sub> efficiently and makes the quality of denitrification effluent more stable
- 6) achieved manure based denitrification rate 2,3 g NO<sub>3</sub>-N/g DM/hour or 14 mg NO<sub>3</sub>-N/l/hour
- 7) membrame flow filtration reduces flocculant use with 70-80% compared to traditional technique
- 8) denitrification can reduce water usage in RAS with 80-90%
- 9) feasibility denitrification depends a lot on local conditions





# Latest developments

- 1) Application DENOX system in 300 ton eel farm as end of pipe solution
- increase NO<sub>3</sub>-N removal rate by discontinuous mixing (induce hydrolysis)
- optimized polymer use on DAF in combination with FeCl<sub>3</sub>
- 99% NO<sub>3</sub> removal, 95% COD removal, process more difficult to control





## Result

## Effect on water discharge quality







- 2) Application in RAS biofloc shrimp production units (replacement sequence batch reactor)
- better and easier biofloc control
- easier management compared to SBR technique (no influence by sedimentation characteristics)
- smaller footprint
- simple set-up, DAF unit not required because of biofloc technique in production





## 3) application in industrial water treatment

- replacement of discontinuous SBR
- membrame flow filter used as sludge/water separation, replacing settling tanks, belt filters and DAF units





# Questions?

Viqon Water Solutions The Netherlands www.viqon.com

