Production of Reproductively Sterile Fish to Eliminate Maturation

Ten-Tsao Wong and Yonathan Zohar Institute of Marine and Environmental Technology University of Maryland, MD, USA

Sterility in Farmed Fish: the Rationale

- Achieve better somatic growth (no early maturation)
- Prevent deterioration of flesh quality and mortality
- Protect IP strains
- Biological containment: prevent propagation of farmed/domesticated, non-native and GM fish

Atlantic salmon escape event in the Pacific

FOOD FOR THOUGHT

'Environmental Nightmare' After Thousands Of Atlantic Salmon Escape Fish Farm

August 24, 2017 - 10:52 AM ET

FROM EAR

Farmed fish should be sterile

Business | Environment | Local News | Puget Sound

After Atlantic salmon spill, fish farms' future under attack on both sides of border

Originally published September 1, 2017 at 6:00 am | Updated September 1, 2017 at 8:59 pm

Recently Approved: AquAdvantage Salmon-Genetically Engineered for GH (US, Canada)

- GE Salmon must be sterile (FDA-November 2015)
- Triploid sterile salmon often display performance issues, not well received by industry

The Search for a New, Non-GMO Approach to Sterility-Disrupting Early Reproductive Development

48 hrs

Early Migration of Primordial Germ Cells (PGCs) Dnd protein Migrating primordial germ cells

PGCs are reproductive "stem" cells that migrate to the developing gonads; the Deadend (Dnd) protein is essential for that migration

Gonad

Modified from G. Yoshizaki

Disrupt the early migration of the PGCs

Transgenic zebrafish with RFP in Primordial Germ Cells for visualizing disruption

The Strategy For Developing Non-GM Sterile Fish

- Use red fluorescent zebrafish (PGCs) to screen (via immersion) for silencing compounds (MO) that disrupt the migration of the PGCs and induce sterility
- Determine minimal doses, duration and timing of immersion
- Select compounds and conditions to apply in trout/salmon

Screening for compounds that disrupt PGC development in the RedFP zebrafish model

Screening for compounds that disrupt PGC development in the R-FP zebrafish model

Screening for compounds in the zebrafish model

Immersion in Dnd-MO-Vivo for 5 hours led to PGC mis-migration and 100% sterility in zebrafish

Wong and Zohar, 2014, 2015

Implementing the findings in trout and Atlantic salmon

USDA- WV Troutlodge- WA USDA- ME AquaGen- Norway

Production of sterile rainbow trout

14 months old (48 hour immersion in Dnd-MO-Vivo)

Infertile fish

Production of sterile rainbow trout using pre-fertilization immersion

Production of sterile Atlantic salmon

9-10 months old

Current trials: Optimization of Conditions For 100% sterility

Atefetitizizationimmeerisionfo(gelealedebgss) for 24-48 hrs

- Micropyle open
- -Petrateable takorion
- -Befige uptakening
- Lower doses

Dnd anti-sense (MO) Molecular transporter Vivo/ZP9

In Conclusion:

- Mismigrating PGCs do not make it to the gonad, resulting in reproductively sterile fish
- 5 hour immersion in Dnd-Mo-Vivo leads to 100% sterility in zebrafish with no effect on performance
- 48 hour immersion is effective in rainbow trout and Atlantic salmon
- Promising early results in tilapia and sablefish
- Germ cell markers make it possible to quickly optimize sterility protocols
- Accelerating studies, large scale optimization and performance trials (Riverence; EvAqua)

Many Collaborations

National Center for Cool and Cold Water Aquaculture Research (ARS/USDA) Greg Weber, Josh Kretzer, Beth Cleavland

Cold Water Marie Aquaculture Research Center (ARS/USDA) Brian Peterson, Bill Wolters, Gary Burr, Melissa Milligan

Trout Lodge

Jim Parsons, Kyle Martin, Douglas Dickson, Austin Franklin

AquaGen

Nina Santi, Maren Mommens, Mona Rostad

Europharma/ACD

Mariann Donnum, Hans Kleppen, Maud Ricatti

Riverence

Rob Young, Bob Iwamoto

MABIT Et næringsrettet FoU-program innen marin bioteknologi i Nord-Norge

Biotechnology Risk Assessment Program

Thank you

Thank you