The effects of photoperiod on Atlantic salmon post-smolt in freshwater closed-containment systems

Aquaculture Innovations Workshop, November 29-30, 2017, Vancouver

RESEARCH TEAM
Christopher Good Steven Summerfelt Travis May Curtis Crouse

Lars Ebbesson Sigurd Handeland Sigurd Stefansson Tom Nilsen Bendik Terjesen Frode Mathisen

РНОТО

$\mathrm{CtrI} \wedge Q U \wedge$

- Objective: To examine the effects of different photoperiod regimes on the quality and robustness of Atlantic salmon post-smolts raised to $1,000 \mathrm{~g}$, and to market size, in freshwater RAS
- There is significant industry interest in raising larger smolts (up to 1 kg) in land-based freshwater RAS
- This new variation on smolt production is largely untested, and optimum environmental conditions need to be established to ensure salmon quality prior to sea cage transfer
- Photoperiod regimes need assessment for their influence on growth performance, maturation, smoltification, and immunocompetence.
PHASE I: TREATMENT SUMMARY

PHOTO - PHASE I

GROWTH PERFORMANCE

	LDN		LD24:0		LD12:12	
Mature $\widehat{0}$ at $\sim 2 \mathrm{~kg}$	364	(22.0\%)	462	(23.8\%)	637	(32.6\%)
Mature q at $\sim \mathbf{2 k g}$	59	(3.6\%)	45	(2.3\%)	49	(2.5\%)
Mature $\hat{0}$ at harvest	168	(10.2\%)	56	(2.9\%)	115	(5.9\%)
Mature q at harvest	194	(11.7\%)	107	(5.5\%)	287	(14.7\%)
Mortalities, culls, and other fish removed	145	(8.8\%)	230	(11.9\%)	194	(9.9\%)
Premium salmon harvested	724	(43.8\%)	1,039	(53.6\%)	670	(34.3\%)

MATURATION DURING GROWOUT

Gill Enzyme Activity

PHOTO - PHASE II: examing the effects of photoperiod \&

feeding rate

2x2 factorial study design incorporating:
(i) photoperiod (constant, i.e. LD24:0 vs. natural, i.e. LDN) and
(ii) feeding regime (full ration vs. 60\% ration)
from smolt to $1,000 \mathrm{~g}$ in freshwater aquaculture systems

PHOTO - PHASE II: examing the effects of photoperiod \& feeding rate

PHOTO - PHASE II: examing the effects of photoperiod \& feeding rate

$\operatorname{Ctrl} \wedge Q U \wedge$

Current status: Recent completion of 500 g sampling event (September 25, 2017)

Condition Factor (K)

Performance

- Best growth performance in the full ration treatment groups
- Best condition factor in LD24:0 / full ration group
- Poor condition factor in 60\% ration groups
No observable signs of maturation in any treatment group

PHOTO - PHASE II: examing the effects of photoperiod \& feeding rate

Welfare

Cataracts (Right Eye)

Cataract and fin damage scores (0-3; 3 = most severe) indicate:

- Generally worse cataracts in full ration groups (density?)
- No clear pattern in overall fin damage

Pelvic (Left)

Pelvic (Right)

Dorsal

Caudal

Incoming data: Gene expression (NKAa1a and 1b, NKCC, DIO2a); Plasma 11-KT; Brain DIO2b mRNA;
Pituitary gene expression (ROBUST); SIQ microarray to assess immunocompetence

PHOTO - PHASE II: examing the effects of photoperiod \& feeding rate

6-week artificial winter

8-week post-winter smoltification window

PHOTO - PHASE II: examing the effects of photoperiod \& feeding rate

Gill Enzyme Activity

PHOTO - PHASE II: examing the effects of photoperiod \& feeding rate

Gill Enzyme Activity

PHOTO - PHASE II: examing the effects of photoperiod \& feeding rate

Gill Enzyme Activity

PHOTO - PHASE II: examing the effects of photoperiod \& feeding rate

Ctrl ^QU^

Next Steps:

- Mark salmon by treatment group and comingle in a single partial reuse system up to market size ($\sim 4 \mathrm{~kg}$)
- Additional tissues analyses for immunocompetence and maturation

Acknowledgements:

- Chance Younker
- Natalie Redman, Megan Murray, \& Karen Schroyer

