Survey - Use of large Circular Tanks in Norwegian Salmon Smolt and Post-Smolt Facilities

Steven Summerfelt, Frode Mathisen, Astrid Holan, Bendik Terjesen

Contro for Closed-Containment Aquacultur

Centre for Closed-Containment Aquaculture

HYDRO – Hydrodynamic challenges in huge tanks (1000 m³)

- Part 1 Survey culture tanks at industry partners
- Part 2 Sample water rotational velocities and tank mixing data from tanks identified in Part 1
- Part 3 Use computational fluid dynamics (CFD) to model and optimize culture tank hydrodynamics

 Surveyed six major Norwegian Atlantic salmon production companies

- All CtrlAQUA participants.

- Circular or octagonal culture tanks > 400 m³
- Determine geometry, operating parameters, and key features

55 Tanks at 7 Land-Based Facilities

- 7.9 (range of 4-12) large tanks per site
- One site with octagonal tanks, others w/ circular
- 500 to 1300 m³ per tank
- 14.5 to 20 m diameter
- 3.5 to 4.5 m tank depths
- 3.6:1 to 5.5:1 m:m diameter:depth

- Over-tank walkways for all tanks
- Pipes penetrate culture tank at tank center
- 4.0 to 6.5% floor slope
- Pipes and sloping floors used to reduce labor when removing dead fish and harvesting fish

conservationfund.org

One Floating Fiberglass Tank

- 21,000 m³
- 40 m diameter
- 20 m tank max depth
- 2.4:1 m:m diameter:depth
- 30% floor slope

Marine Harvest Molnes

Ctrl/QU/

conservationfund.org

- Less than half of L-B tanks operate dual drains
 - Majority of flow discharged through the bottomcenter drain of the dual-drain tank
- Floating tank
 - ~20% flow through the bottom-center drain
 - ~80% of flow exited side-wall drains located almost at the bottom of the tank
 - More similar to L-B tanks operated in North America

Flow & Hydraulic Retention Time

- 3 to 19 m³/min max flow per land-based tank
 400 m³/min at the floating tank
- 35 to 170 min HRT
- Half of tanks installed-renovated since 2013
 - Includes 3 tank systems with the highest flow rate per tank (greater than 17.6 m³/min)

HRT versus Year Operation Began

• Since 2013, more rapid tank HRT's (35 to 53 min)

Maximum Feed Load & Density

- Land-based tanks
 - 525 to 850 kg/day
 - 40 to 70 kg/m³
- Floating tank
 - 3700 kg/day
 - 20 kg/m³

CONSERVATION FUND

Flow per Unit of Feed Load (max.)

	Flow per Feed (m ³ flow/kg feed)
Before 2010 (land-based)	19-30
2010 – 2015 (land-based)	33-40
Floating Tank	160

- Tanks built-renovated from 2010-2015 used more flow per unit of feed load than tank built previously
- Floating tank used much more flow per unit feed
 - Increasing flow is cheap with low lift pumping & no treatment requirement

Ctrl/QU/

Metabolic Loading Per Unit Flow

	Theoretical Max. O ₂ Consump. Each Pass (mg/L)
Before 2010 (land-based)	12-21
2010 – 2015 (land-based)	8.8-12
Floating Tank	2.2-2.5

- Compared to previous practices, recently built-renovated tanks are operated
 - at reduced metabolic loading per unit of flow
 - improves water quality throughout the culture tank

Part 1 – Conclusions

- Trends in large smolt & post-smolt tanks:
 - Increasing use of large culture tanks in land-based RAS
 - Increasing awareness of general fish welfare and limits on metabolic waste accumulation and
 - Tanks are operated at a lower intensity per unit of flow to optimize water quality throughout the culture tank
 - counter to practices reported just a decade earlier
 - possible because of increased use of RAS technology
 - Multiple drain outlets provide more operating options
 - Impact of in-tank pipes on hydrodynamics is yet unknown

Survey of large circular and octagonal tanks operated at Norwegian commercial smolt and post-smolt sites.

Steven Summerfelt, Frode Mathisen, Astrid Holan Buran, and Bendik Fyhn Terjesen. **2016**. *Aquacultural Engineering 74, 105-110*.

http://www.sciencedirect.com/science/article/pii/ S0144860916300097

Acknowledgments

- CtrlAQUA SFI funding by the Research Council of Norway (project #237856/O30) and CtrlAQUA partners.
- Special thanks to:
 - Geir Magne Knutsen, Bremnes Seashore AS
 - Karl Fredrik Ottem, Cermaq Norway AS
 - Julia Fossberg, Lerøy Midt AS
 - Michael Fülberth, Njord Salmon
 - Sara Calabrese and Ragnar Joensen, Marine Harvest ASA
 - John Ivar Saetre, Dharma Rajeswaran, and staff at the Steinsvik Hatchery, Marine Harvest ASA

CtrlAQUA