Performance of all-female Atlantic salmon in freshwater closedcontainment systems

2017 AIW, Vancouver, Nov 29-30

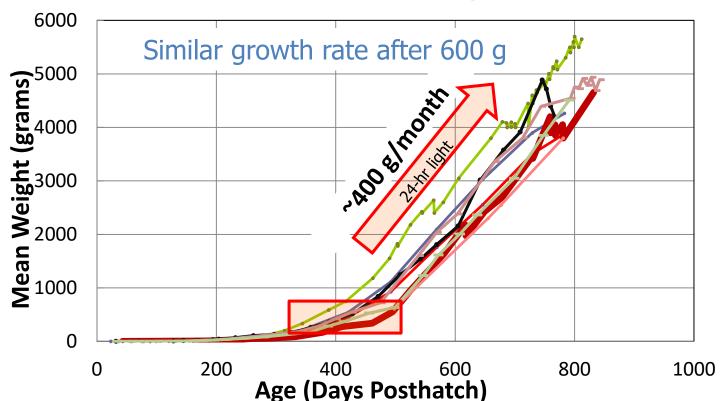
Steven Summerfelt, John Davidson, Tom Waldrop, Curtis Crouse, Travis May, Christopher Good

Land-Raised Salmon in Closed Containment Systems

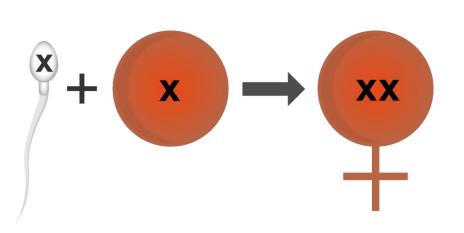
Smolt production (freshwater)

Post-smolt production (fresh or brackish)

Market-size salmon production (fr or br)


RAS Differences - Sea vs Freshwater

- <u>Challenge</u>: Seawater RAS require more flow, larger processes, & more \$\$, plus toxins/pathogens
 - O₂ saturation in seawater is 20% less than freshwater
 - CO₂ removal effic. in seawater is 20% less than fresh
 - Nitrification is 30-60% degraded in seawater vs fresh
 - Low-dose O₃ can create toxic bromine in brackishseawater RAS if not carefully dosed
 - High SO₄ in seawater can produce toxic H₂S in RAS
 - Pathogen risk in seawater intake (borehole vs surface)
 - Corrosion resistant materials are required


RAS Differences - Sea vs Freshwater

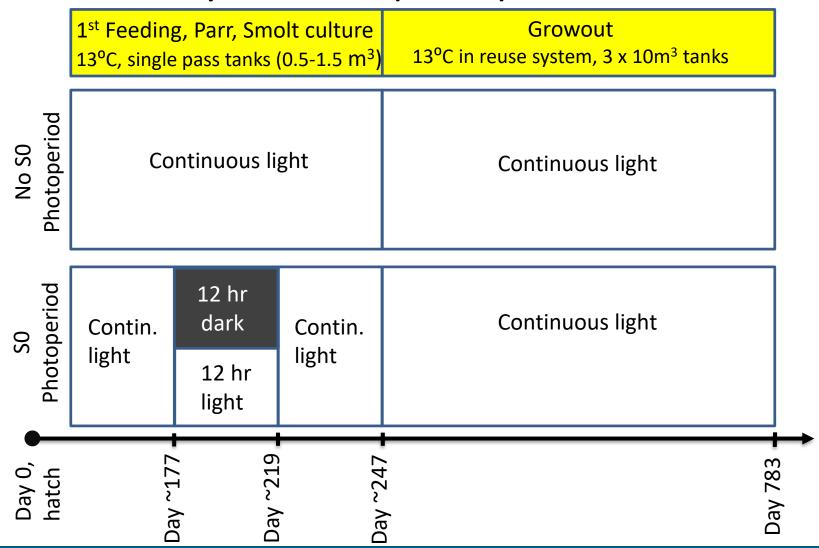
- Challenge: Post-smolt salar in freshwater RAS
 - slow and inconsistent growth from 100-500 g
 - increased male maturation @ ≥13°C

Hypothesis: All-female germplasm can reduce maturation; it eliminates male maturation

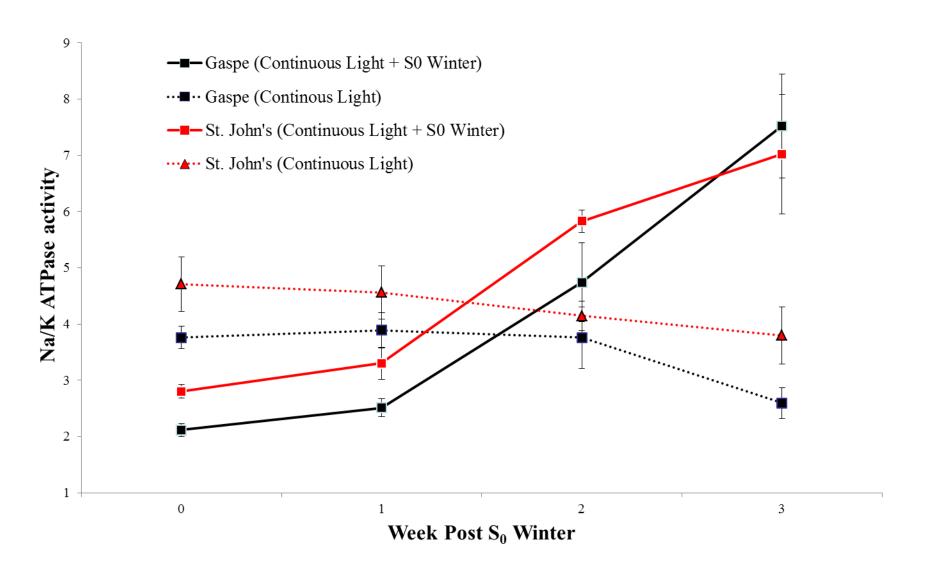
(2009-2010)

Materials and Methods

2x2 Factorial Study: Strain x photoperiod


- Two Atlantic salmon strains:
 - 1. St. John River from Cooke (**mixed sex**, diploids)
 - 2. Gaspe from Troutlodge (all female, diploids)
- Two early rearing light regimes:
 - 1. Continuous light (No S₀ winter)
 - 2. Continuous light with S₀ winter
 - 12h:12h light:dark for six weeks, then to continuous light

Growout


- Co-Mingled 4 trts in three 10 m³ tanks (n=3)
 - 1. 300 PIT tagged fish per strain
 - 2. Continuous light using metal halide high-bay fixtures
 - 1. 4000K color, 400 Watt fixtures (Metalarc Pro-Tech, Sylvania)
 - 3. Biomass density maintained at $\sim 40-80 \text{ kg/m}^3$
 - 4. Sampled at 25 months post-
 - 1. Size, g
 - 2. GSI
 - 3. Head-on gutted (HOG)
 - 1. fillet attributes

Culture system and photoperiod timeline

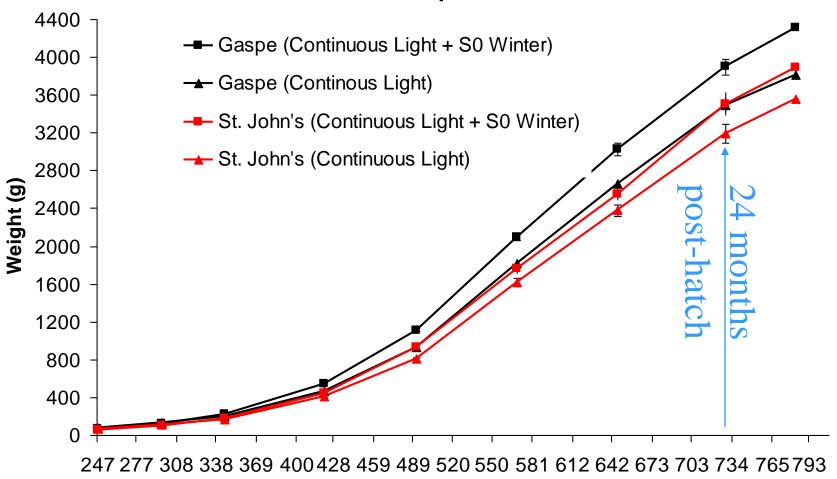
Gill ATPase Post-S₀ Winter

Results: Maturation

Mean Gonadal Somatic Index (GSI): % (min, max)

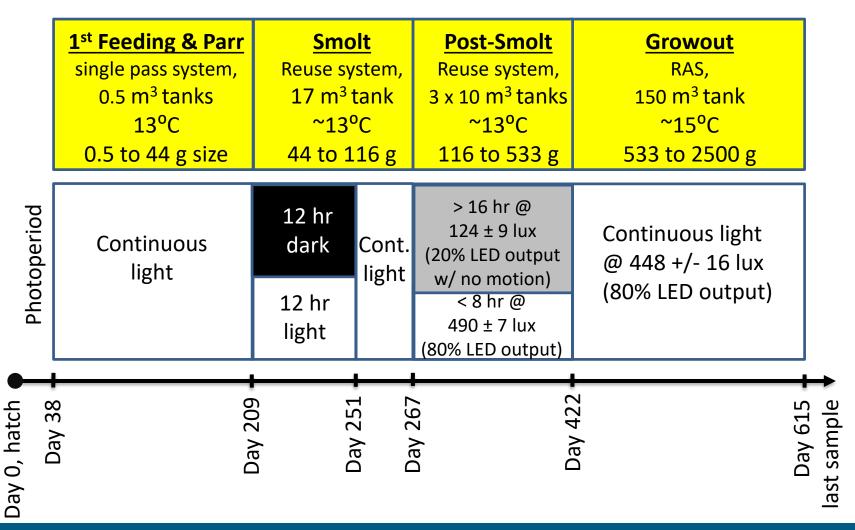
		<u>Photoperiod</u>			
Strain		S_0	No S ₀		
Gaspe (all female)		0.41 (0.23 – 0.91)	0.38 (0.08 – 1.15)		
St John River	Females	0.31 (0.24 – 0.36)	0.29 (0.02 – 0.54)		
	Males	2.88 (0.09 – 8.32)	4.03 (0.14 – 7.25)		

% Population Mature

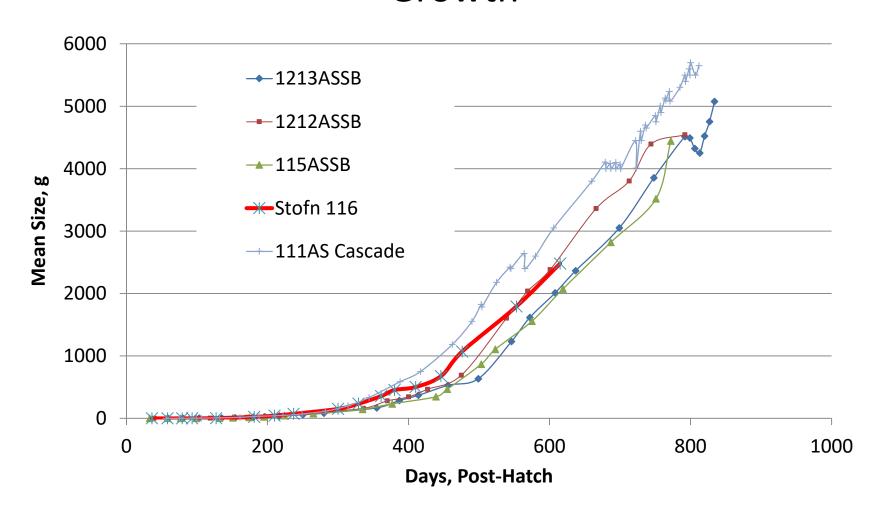

Strain		GSI	S ₀	Photoperiod No S ₀	
Gaspe (all female)		>2.0 >1.0	0.0 0.0	0.0 5.5	
St John River	Females	>2.0 >1.0	0.0 0.0	0.0 0.0	
	Males	>0.5	53.8	71.4	

- No females sexually matured (e.g., GSI>1.2)
- over 50% of male St John River strain salmon were sexually mature

 Rapid Atlantic salmon growth (4 kg in best trt) in freshwater to 24-month post-hatch at 13°C

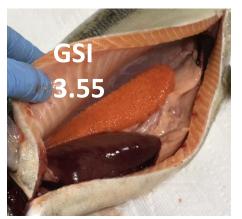


- Gaspe strain (all females) grew faster than
 St John strain (mixed sex)
- Providing an SO winter decreased time to harvest size, increased growth


Atlantic Salmon Study #2 (2016-2017)

- All-Female Atlantic salmon diploids
 - Eyed-eggs arrived January 29, 2016
 - Stofnfiskur (Iceland)
- Ewos/Cargill feed
 - Parr/Smolt/Post-Smolt
 - "Transfer diet", 48:24
 - Growout
 - "Conserve FMF", 42:28, natural astaxanthin (Panaford)
- Intended light regime
 - Continuous light with S0 winter
 - 12h light, 12h dark for six weeks, then continuous light
 - LED high-bay fixtures
 - 5000K color temperature, dimmable, programmable motion-detection activation
 - Digital Lumens (Boston, MA)

Culture system and photoperiod timeline


Atlantic Salmon Study #2 Growth


Results: Female Maturation

Egg Arrival	Dec 12	Dec 13	Jan 15	Jan 16
Cohort Harvest	2015	2016	2017	2018
Strain	SalmoBreed	SalmoBreed	SalmoBreed	Stofnfisk.
Mature Females, % of pop	1.6	4.7	14	52

(Programmable high-bay LED lights replaced metal halide lights in 2014)

Gonads In Situ All-female Atlantic salmon, ~2-3 kg

Differences in Studies 1 & 2

- Photoperiod cue
 - Study #2 may have provided two winter photoperiod cues
- Different strain of Atlantic salmon
 - Gaspe may be less susceptible to maturation than Stofinfskur strain in freshwater (??)
- Water temperature
 - Study #1 was at near constant 13°C through life-cycle
 - Study #2 moved post-smolt from 13°C to 15°C for growout
- Water quality
 - Study #1 used a partial reuse system with less opportunity for hormone accumulation
 - Study #2, used a RAS for growout with biofilters & ozone

Conclusion

- <u>Uncertain why</u> female salmon maturation occurred in recent study, but not in previous study.
 - In freshwater, Atlantic salmon maturation is sensitive to environmental conditions, e.g., photoperiod & temp
 - Hypothesis: two winter photoperiods were created that triggered high maturation

Future studies:

- Sterile (i.e., Wong & Zohar approach) Atlantic salmon or <u>all-female</u>
 <u>triploid</u> salmon performance in freshwater RAS
- Use of bright:dim photoperiods to trigger smoltification or other endocrine signal, allowing for 24/7 feed & consist. water quality

Acknowledgements

