UBC InSEAS (Initiative for the Study of Environment and its Aquatic Systems)

Optimal Salinity Conditions for Atlantic and Coho salmon growth in RAS

Colin J. Brauner, Joshua Emerman, Victor Chan, Yuanchang Fang, Matt Gilbert, Kevin Stiller & Jeffrey Richards

Department of Zoology, University of British Columbia

Issues to Address in RAS

Small profit margins

Profitability depends on maximizing growth and/or increasing feed conversion efficiency

Optimal conditions for growth of salmon are unknown

• Temperature, photoperiod, salinity, oxygen, pH, ammonia, etc

InSEAS RAS Research Facility

- 7 high-density independent recirculation systems (120 kg/m³) Each system has 2 x 5m³ tanks and 2 x 0.7 m³ tanks
- Automatic feeders on large tanks
- Environmental control and monitoring systems

InSEAS Regression Approach

InSEAS Regression Approach

InSEAS Regression Approach

Salinity

In a single experiment, we can determine the optimal value for a given parameter in two species across multiple life stages.

Specific Research Goals:

Determine optimal salinity for growth and performance of coho salmon and Altantic salmon reared in RAS from smolt to adult.

- i) Growth
- ii) Performance: Is there are tradeoff between growth and physiological performance (low O₂, swimming speed, high T) ie Biological Safety Factor?
- iii) Effect of salinity on early maturation and cataract formation

Salmon in sea water (30 ppt)

Osmoregulation can account for 10-50% of standard metabolic rate (Bœuf & Payan, 2001)

Salmon at intermediate salinity (~10 ppt)

Salmon at intermediate salinity

Salmon at intermediate salinity

Is fish growth affected by system?

Is fish growth affected by system?

Defining Optimal Salinity

Coho & Atlantic salmon were reared for 12-15 months at 5 salinities ranging from FW to SW at 13°C (0, 5, 10, 20, and 30ppt)

Stocking density of 40 kg/m³

Fed to satiation

Reared under 24 h light

Monitored growth, feed conversion, physiological performance, maturation and cataracts

Coho Salmon Performance Hypoxia Tolerance

No difference in time to loss of equilibrium (LOE) during exposure to low O_2 .

Coho Salmon Performance Swimming Performance

No difference in swimming performance.

Summary Coho Salmon in RAS

At small sizes, growth is enhanced by up to 50% at 10 ppt compared with other salinities

Better feed conversion at intermediate salinities

No difference in hypoxia tolerance or swimming performance

No early maturation (all female strain) or cataracts detected.

Atlantic Salmon Performance Hypoxia Tolerance

No difference in time to loss of equilibrium (LOE) during low O_2 despite differences in growth rate.

Atlantic Salmon Performance Swimming Performance

No difference in swimming performance despite differences in growth rate.

Heart rate becomes irregular at a lower T in 10 ppt fish indicating lower T tolerance.

Maximum heart rate during increasing T is reduced at 10 ppt.

Fish reared at 10 ppt have a lower heart (atrium) mass.

Atlantic Salmon Early Maturation and Cataracts

Maturation is reduced at 5 ppt (when growth is greatly enhanced) and 30 ppt. Cataracts are reduced at 30 ppt.

Conclusions Coho & Atlantic Salmon

Atlantic Salmon

- Up to ~600 g, salinity does not appear to affect growth.
- Above ~600 g, intermediate salinities enhance growth.
- No effect of salinity on hypoxia tolerance or swimming performance.
- Intermediate salinities (10 ppt) may affect cardiovascular function at high temperature.
- Thus some evidence of trade-offs between growth and performance.
- Higher salinity appears to reduce early maturation and cataracts. Maturation may be reduced at 5 ppt.

Conclusions Coho & Atlantic Salmon

Coho Salmon

- At a small size (<350 g), intermediate salinities appear to improve growth and feed conversion compared with freshwater and seawater.
- Effects persist over a year of growth.
- No effect of salinity on hypoxia tolerance or swimming performance. Thus, there is no trade-off between growth and performance.
- Minimal effects on early maturation (all female strain) and cataracts. The latter differs greatly from Atlantics.

Thank you

Aquatic Technicians Patrick Tamkee and Neil Fowler

Additional Researchers Wendy Vandersteen, Tara McBryan and Andrew Thompson

<u>BSc Students</u> Gadwyn Gan, Yuchen Li, Bill Chen and Julia Liou

Funding and Support

Western	Econe	omic
Diversific	ation	Canad

de l'Ouest Canada

HATCHERIES

Coho Salmon Oxygen Consumption Rates

Coho Salmon Oxygen Consumption Rates

Atlantic Salmon Oxygen Consumption Rates

Atlantic Salmon Oxygen Consumption Rates

