Advances in Alternative Aquafeeds

for

Aquaculture Innovation Workshop January 17-18, 2011

Rick Barrows U.S. Department of Agriculture Agricultural Research Service Hagerman, Idaho USA

Alternative Aquafeeds ARS Feed Development Bozeman Fish Technology Center, Montana

Aquaculture Innovation Workshop Advances in Alternative Aquafeeds

Today

Where we are and how we got here

 a) Ingredient evaluation
 b) Ingredient development
 c) Supplementation/requirements (w/o fish meal)

2) What is ahead; ingredients and complete feeds. Feeds for Re-circulating Aquaculture Sytstems

Where we are ARS Fish Meal Free Aquafeeds

Gateway or Demonstration Formulas

Trout Salmon Arctic char Cobia White Sea bass Yellowtail

Matched or surpassed the fish meal control and/or commercial reference diet

Advances in Alternative Aquafeeds Aquaculture Innovation Workshop

How we got there

Approach

1) Ingredient evaluation; process

2) Ingredient development; 4 approaches

3) Nutrient requirement/supplementation.

4) Complete feed evaluation; *multiple stages*

Ingredient Evaluation

1) Compositional analysis

- Nutrients; protein, energy, amino acids, fatty acids, etc.
- Anti-nutrients; evolved in a protective or developmental role
- 2) Palatability; Effect on feed intake
- 3) Digestibility; Apparent Digestibility Coefficients
- 4) Functionality; durability, expansion, oil absorption, water stability
- 5) Growth; gain, FCR, fecal prod. product quality

Anti-nutrients in plant derived ingredients

Soybean Meal;

Glycinine, ug/kg Beta Con Glycinine, ug/kg Lectins, mg/kg Dry solids, g/kg Stachyose, g/kg Raffinose, g/kg Oligosaccharides, g/kg Trypsin Inhibitor Activity, mg/g Saponin, Type B Ba, g/kg Saponin, Type Bb' (type I), g/kg Saponin, Type Bb (type I), g/kg Saponin, Type B Bc (type II, III), g/kg Saponin, Type B Bc' (type II, III), g/kg Type B Saponins, g/kg Type DDMP Saponins, g/kg Total Type B and DDMP Saponins, g/kg **Phytate**

Barley: Phytate

Glucosinolates Alkaloyds

2&3) Palatability and Digestibility

Apparent Digestibility Coefficient, %

Ingredients

Peruvian Anchovy

Select menhaden fish meal

Basal formula Inclusion rates Feed processing Fish size Water temperature Fecal collection Time of collection

Sardine
Mexican fish meal
Menhaden FAQ
Poultry by-product, pet food
Blood meal, SD poultry
Feather meal
Soybean meal
Corn gluten meal
Canola meal
Whole wheat
Wheat mill run
Whole corn
Wheat flour
Cottonseed meal
Wheat midds
Rice bran
Rice protein conc., 70%
Soy protein concentrate
Barley protein conc., 25%
Wheat gluten meal

Whole flax

Waxbar barley
CSM Batch 2
Soybean meal, in-situ esterfied
Soybean meal, bio-diesel control
Barley Protein Concentrate, 1 step
Barley Protein Concentrate, 2 step
Barley Protein Concentrate, pilot
Fisheries by-product, NOAA 1
Fisheries by-product, NOAA 2
Oberon, bacterial protein
Maggot purree
Pepsinogen, soy-fungal
Annelids
Black soldier fly larvae
Nu-Pro, yeast protein
Bio-fuel algal mass S-1
Bio-fuel algal mass T-6b
Bio-fuel algal mass M-3
Bio-fuel algal mass D
Phosphorus chelate
Phosphorus proteinate

Nutrients	Poultry by-product
Dry matter	83.7
Protein	84.7
Energy	89.9
Ash	44.2
Organic matter	89.0
Asp	80.3
Glu	87.7
Ser	87.1
His	87.6
Gly	85.4
Thr	84.7
Ala	89.7
Arg	91.6
Tau	85.7
Tyr	84.6
Val	81.1
Met	91.4
Phe	86.1
lle	80.1
Leu	86.7
Lys	89.9
Phosphorus	41.1

	DM	Fat	Pratei
Soybean Meal 48%CP	75.3	85.8	95.9
Soy Protein Concentrate	94.3	187.3	103.1
Barley Protein Concentrate	97.3	102.9	99.7
Corn Protein Concentrate	95.0	91.7	89.5
Spirulina, CCC	77.5	85.4	80.5
Spirulina, Earthrise	83.9	69.7	80.3
Menhaden Special Select	98.3	101.9	91.7
Krill Meal	85.0	99.1	84.4
Yeast protein, NuPro	19.9	5.8	36.7
Reference diet	76.3	98.3	86.6
Poultry Blood 8521	79.1	-13.9	76.9
Modified Soy, Hamlet	67.5	13.8	90.3
Chicken meal, ADF	100.3	94.8	98.3
Menhaden Special Select	70.1	81.7	85.2
Modified Soy Omnitek	54.1	-5.7	90.9
Bacterial Biomass, ADM	81.2	91.0	89.4
Reference diet	76.3	98.7	86.1
Menhaden Special Select	79.2	89.1	91.1
HPDDG DDGS	51.5	78.6	83.0
Wentworth DDGS	50.4	79.1	87.6
Valero DDGS	39.7	83.2	80.8
Eliot SBM lot A	61.3	36.8	90.8
Eliot SBM lot B	57.1	45.5	85.7
Eliot SBM Sample C	69.9	111.0	95.5
SBM (Standard ADM 47%)	29.5	76.0	77.1
Selecta SPC Solae	53.2	70.4	90.4
Reference diet	75.9	94.9	83.4

ADC's for Trout Trials in 2010

	DM	Fat	Protein
Menhaden, Special Select	84.6	112.4	84.9
ARS Protein co-product	70.9	119.1	83.3
ARS Mineral Supplement	79.7	107.3	79.0
FD Algae, unknown	36.3	-22.4	20.8
Worms	71.4	71.5	74.3
Reference diet	63.7	90.3	87.3
Menhaden Select	76.8	102.4	82.3
Canola Protein Conc.	69.4	111.6	81.1
Corn Protein	80.0	108.0	74.5
Nu-pro	41.8	109.6	54.9
NOAA	85.6	101.7	84.8
Spirulina	90.9	139.3	84.6
Barley Pro.	73.1	90.1	91.2
Reference diet	71.2	93.8	86.2

Apparent Digestibility Coefficients

National Center for Coldwater Marine Aquaculture

	Arctic charr			Atl	Atlantic Salmon		
Ingredient	ОМ	DM	Protein	ОМ	DM	Protein	
Spirulina, CCC	80.1	77.9	82.2	85.5	82.1	84.6	
Corn Gluten Meal	73.8	67.2	84.6	88.4	86.4	94.1	
Soybean Meal	54.9	44.9	77.2	80.2	69.6	93.7	
Soy Protein Conc.	38.9	32.0	79.0	77.1	65.5	90.7	
P > F value	0.01	0.001	0.09	0.09	0.02	0.03	

Hybrid Striped Bass, Pompano, Cobia

Ingredient Evaluation 5) Growth Trials

1) Laboratory scale

- a) single ingredient replacement
- b) protein blend approach

2) Pilot Scale; practical formulations Sensory evaluation of final product

3) Third Party Validation; reference diet

Growth Trials; Single Ingredient Replacement

Substitution of fish meal or soy protein concentrate with barley protein concentrate or Bio-soy

	F 100	F66/BP33	F33/BP66	BP100
Fish meal	34.25	22.84	11.42	
Soy Protein Conc.				
Barley Protein Conc.		14.75	29.50	44.11
Fish oil	12.60	13.85	15.05	16.15
Flour	31.68	23.80	17.34	11.33
Poultry by-product meal	9.82	9.82	9.82	9.82
Blood meal	6.33	6.33	6.33	6.33
Soybean meal	3.42	3.42	3.42	3.42

SP100 SP66/BP33 SP33/BP66

BP100

Substitution of fish meal or soy protein concentrate with barley protein concentrate; 12 weeks Montana

Substitution of fish meal or soy protein concentrate with barley protein concentrate or Bio-soy; 12 weeks

Third Party Validations

feed produced commercially

Freshwater Institute Clear Springs Foods Virginia Trout and Salmon American Trout and Salmon

All diets formulated on an available amino acid basis to target protein profile

In-house and Extramural

1) Chemical
 2) Mechanical
 3) Biological
 4) Genetic

1) Chemical Modification ARS patent; licensed to Montana Microbial Products, LLC

Barley, 12% protein

Pretreatment, low temperature

Barley Protein Conc., ~41% protein

Low temperature treatment, fermentation, no distillation

Ethanol

Barley Protein Conc., ~55% protein

460% protein concentration

2) Mechanical Air-classification of barley and oats

Adaptive Bio-Resources, LLC

12%-30% protein

Too low for a primary protein High protein carbohydrate source Multiple product streams

3) Biological Enhancement

Montana Microbial Products

4) Genetic improvement

Improved Genetic Lines of Soybeans;

Soybeans;

- VUDODOG
- - multiple types

All non-GMO

Advances in Sustainable Feeds Aquaculture Innovation Workshop

Raw soybeans

Toasting Hexane Extraction

Soybean meal Soy oil 48-46% protein

Soy Protein Concentrate ~60-70% protein Esterfication cons

Bio-diesel

Soy Protein Isolate

~80% protein

Soybeans

Improved Genetic Lines; Full Fat Beans Apparent Digestibility Coefficients

	% Protein	Protein ADC, %	Lysine ADC, %	Dry matter ADC %
Fish, Menhaden Special Select	68			
Commodity soybeans	41			1
Low Trypsin cold	ЛЛ			
Low Trypsin, heated				
Ultra-low Trypsin, cold	13			
Ultra-low Trypsin, heated			1	
UL Oligo, Very high pro. Cold	/10			
UL Oligo, Very high pro. heat	43			

Soybeans

Improved Genetic Lines; Full Fat Beans Apparent Digestibility Coefficients

	% Protein	Protein ADC, %	Lysine ADC, %	Dry matter ADC %	
Fish, Menhaden Special Select	68	89.8	95.6	77.6	
Commodity soybeans	41	90.9	94.3	65.1	
Low Trypsin cold	ЛЛ	87.1 9.5%	92.3 %	72.0	\2
Low Trypsin, heated	44	96.3	97.3	76.1	
Ultra-low Trypsin, cold	10	93.6	93.0	73.0	
Ultra-low Trypsin, heated	43	100	100	82.8	
UL Oligo, Very high pro. Cold	40	100	100	86.5 🏑	
UL Oligo, Very high pro. heat	43	99.3	99.8	81.2	

Soybeans

Improved Genetic Lines;

Trials in 2011

Trout, laboratory, ARS, growth, functionality & processing Trout, raceway studies, ARS & Clear Springs Foods Atlantic Salmon, laboratory, ARS & EWOS Innovation Atlantic Salmon, production testing, EWOS Innovation Cobia, laboratory, ARS & Virginia Cobia Farms Yellowtail, laboratory, ARS & Kona Blue Water Farms Improved processing, ARS & Adaptive Bio-Resources

3) Supplementation and species application

Plant-Based and Fish-Meal Free Trout Feeds

Essential nutrients in fish meal Amino acids; taurine, lys, met, thr. etc.

Balance to target protein profile Vitamins; Inositol Minerals; magnesium, sodium, potassium Lipids; ?

Supplement to practical fish meal based and plant based diets requirement versus supplementation trials

Effect of base formula and added algal meal on growth of white sea bass; 8 weeks

Hubb's Sea World Research Institute San Diego, CA

Imperial Aquafeeds, LLC Imperial Valley, CA

Effect of base formula and added spirulina meal on growth of white sea bass; 8 weeks

Hubb's Sea World Research Institute San Diego, CA Imperial Aquafeeds, LLC Imperial Valley, CA

Effect of base formula and added spirulina meal on survival of white sea bass; 8 weeks

Hubb's Sea World Research Institute San Diego, CA

Imperial Aquafeeds, LLC Imperial Valley, CA

Aquaculture Innovation Workshop Advances in Alternative Feeds

Feed Formulations;

Interactions with Re-circulating Aquaculture Systems

Guar gum Animal products

Total solids and type of solids

Total ammonia nitrogen

Trace mineral levels

Advances in Alternative Feeds Aquaculture Innovation Workshop

Total Ammonia Nitrogen; Cobia, Center for Marine Biology, Maryland Balance available amino acids to a target protein profile

Aquaculture Innovation Workshop Advances in Alternative Feeds

Feed Formulations; interactions with RAS

Total solids and type of solids

Total ammonia nitrogen

Trace and macro mineral levels

Effluents, bio-floc

Cu source by level by base formula 2 x 4 x 2 Aquaculture Innovation Workshop Advances in Alternative Feeds

Summary and Conclusions

Feeds can be designed for specific rearing conditions
 Increased ingredient selection and increased knowledge of ingredient performance will result in more responsive and cost-effective feeds in the future.

Fish meal can be a good ingredient but is not required.

