

Bringing Water Quality
Trading to the Stormwater
Sector
Under the Chesapeake
Bay TMDL

Cy Jones World Resources Institute

National Workshop on Water Quality Markets

September 16, 2015 Lincoln, Nebraska

Pennsylvania

Maryland

West Virginia

Delaware

Virginia

New York

Washington, D.C.

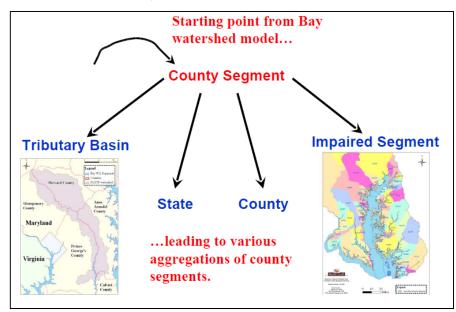
Chesapeake Bay Total Maximum Daily Load

Final issued December 28, 2010

Four Key Questions:

- What needs to be done?
- Who will be doing it at the state and local scale?
- How will it be done?
- · By when will it be done?

Answers in the next generation implementation plans!



Watershed Implementation

Plans

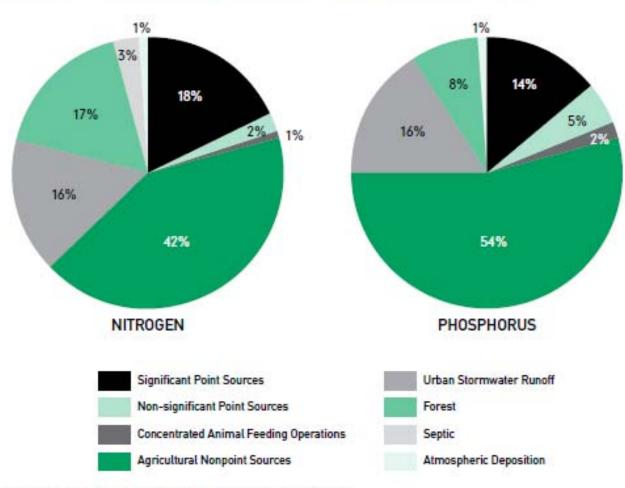
State Level

County Level

County-Level Load Caps for each Sector

Wastewater Agriculture

Urban Septics

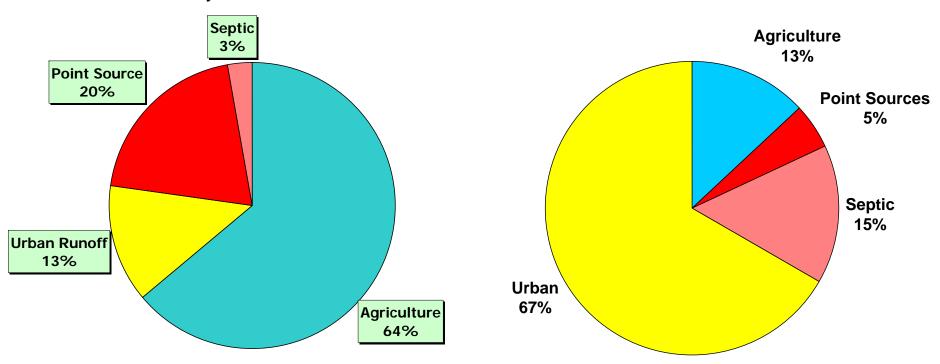

RESPONDE OF Nutrient Trading in the TMDL

Affordability and Cost-Effectiveness

The Cost of a Clean Bay		
The Big Picture		
Total projected cost	\$18.7 billion	
Total projected income	\$5.9 billion	
Unfunded gap	\$12.8 billion	
Unfunded Gap by State		
Maryland	\$2.9 billion	
Pennsylvania	\$4.8 billion	
Virginia	\$5.1 billion	

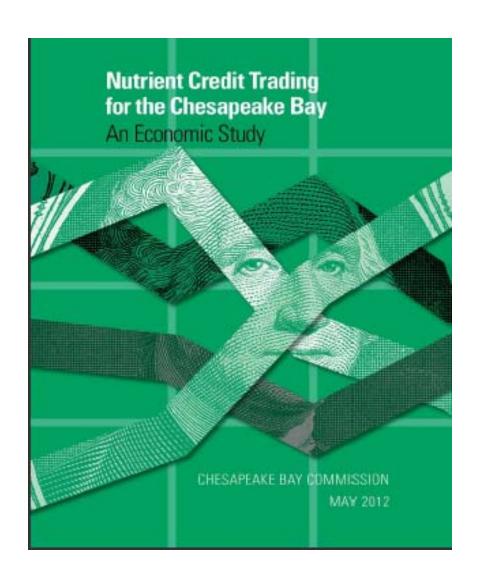
Figure 2-2
Contributions of Nutrient Loads Delivered to the Chesapeake Bay from Different Sources

SOURCE: CHESAPEAKE BAY PROGRAM PHASE 5.3.2 WATERSHED MODEL (2010 PROGRESS SCENARIO)


Expected Tributary Strategy Load Reduction by Source vs. Cost

Nutrient Reduction by Source

Percent of necessary nitrogen load reduction States expect to achieve from Tributary Strategies* from 2002 to 2010 by source.


Annualized Cost

Percent of Total Annualized Cost of Tributary Strategy Implementation* By Source

^{*} The District of Columbia, Delaware, and West Virginia draft tributary strategies do not meet all of the cap load allocations; these jurisdictions are refining their strategies. Load reductions will increase and costs are likely to change. Because the New York Tributary Strategy has not been finalized, we assumed that the load reductions are based on the strategy meeting the state's nitrogen goal.

Source: Chesapeake Bay Commission

Prepared for CBC by RTI International Funded by Linden Trust for Conservation

Trading Participation Scenarios

- No trading;
- Trading between significant point sources;
- Trading between significant point sources and agricultural NPSs; and
- Trading between significant point sources, urban stormwater, and agricultural NPSs.

Trading area sub-scenarios

- In-basin, in-state trading;
- In-state trading;
- In-basin trading; and
- Watershed-wide trading

Cost Optimization Model - Maximum Theoretical Cost Savings

TABLE 7.5 Annual cost savings for point-source to point-source and point-source to agricultural NPS trading (CBC, 2012).

Scenario	Annual savings Million \$/Yr	Annual savings Percent	Annual cost Million \$/Yr
No trading			385
Point sources	77 – 108	20 – 28	277 – 308
Point sources and agricultural NPSs	139 – 189	36 – 49	196 – 246

TABLE 7.6 Annual cost savings for point-source to point-source and point-source/urban stormwater to agricultural NPS trading (CBC, 2012).

Scenario	Annual savings Million \$/Yr	Annual savings Percent	Annual cost Million \$/Yr
No trading			1,470
Point sources, Urban stormwater, and agricultural NPSs	1,160 – 1,210	79 – 82	310 – 263

Chesapeake Water Quality Trading Initiative: Facilitating Nutrient Trading for the Stormwater Sector Through Local Government Partners

Queen Anne's County, Maryland Montgomery County, Maryland Arlington, Virginia Chesapeake Bay Foundation World Resources Institute

Funded by Linden Trust for Conservation

Demand Side Analysis

Nutrient Reduction Requirements
Watershed Implementation Plans
MS4 Permit Requirements
Current Planning and Budgeting
Current Nutrient Loads
Load Reductions from Planned Stormwater Projects
Identify Load and Timing Shortfalls
Economic Analyses

Supply Side Analysis

Overall Potential for Agricultural Credit Production
Outreach to Farmers
Assess Individual Farms
Quantify Potential Credit Availability
Credit Price Discovery

Goals

Demonstrate Feasibility and Benefits to Stormwater, Agricultural and Regulatory Communities

Engage the Agricultural Community in Trading

Achieve Regulatory Compliance, Cost Savings and Additional Environmental Benefits

Influence Trading Policy and Regulations and Stormwater Permitting Strategy Locally, Regionally, and Nationally

Queen Anne's County, Maryland

Non-MS4, No Regulatory Driver Credit Purchases Authorized and Funds Budgeted Ongoing Individual Farm Assessments Aggregator Recruited

Montgomery County, Maryland
Phase II MS4
Stormwater Strategic Plan -- \$2 Billion to Comply

Cost per pound of nutrient reductions from stormwater BMPs used by Montgomery County

	Nitrogen	Phosphorus
Highest cost BMP ¹	\$8,404	\$102,491
Lowest cost BMP ¹	\$531	\$907
Median ¹	\$1,650	\$4,613
Restoration projects ²	\$6,219	\$17,606

¹⁾ King and Hagan analysis; 2) Montgomery County

INTERIM STRATEGY NUTRIENT REDUCTION TARGETS (lbs)*

	2009 Baseline	2017 Target	2020 Target
Total N	948,441	115,939	165,627
Total P	45,610	8,919	12,741

NUTRIENT REDUCTIONS RESULTING FROM REDUCTIONS IN IMPERVIOUS ACRES (Lbs)

	By 2015	By 2020
Nitrogen	18,638	22,174
Phosphorus	1,906	2,504

Demand Analysis Completed

Credit Supply Analyses
Working with Montgomery Soil
Conservation District

Starting to Assess Individual Farms

Arlington County, Virginia
MS4 Phase II
Load Reductions over Three 5-Yr Permit Periods
Need for Credits End of Next Permit Period
Will Buy Credits from Water Reclamation Facility
WRF May Sell Credits to Other Virginia MS4s

